
JS/Firebase Web App Tutorial Part 1: Building a Minimal
App in Seven Steps

Learn how to build a minimal front-end web application with cloud storage using plain
JavaScript and Firebase

By Gerd Wagner and Juan-Francisco Reyes

Warning: This tutorial manuscript may contain errors and may still be incomplete. Please report any issue to Gerd Wagner.

This tutorial is also available in the following formats: PDF.

You may run the example app from our server, or download the code as a ZIP archive file.

Copyright © 2020-22 Gerd Wagner and Juan-Francisco Reyes.

This tutorial article, along with any associated source code, is licensed under The Code Project Open License (CPOL),
implying that the associated code is provided "as-is", can be modified to create derivative works, can be redistributed, and
can be used in commercial applications, but the article must not be distributed or republished without the author's consent.

Published 2022-05-23.

Table of Contents

List of Figures

List of Tables

Foreword

Chapter 1. A Quick Tour of the Foundations of Web Apps
1.1. The World Wide Web (WWW)
1.2. HTML and XML
1.3. Styling Web Documents and User Interfaces with CSS
1.4. JavaScript - "the assembly language of the Web"
1.5. Accessibility for Web Apps
1.6. Quiz Questions

Chapter 2. More on JavaScript
2.1. JavaScript Basics
2.2. Asynchronous Programming
2.3. Using ES6 Modules
2.4. Quiz Questions

Chapter 3. Building Web Apps with Firebase
3.1. Introducing Firebase
3.2. Firebase JS SDK version 9, the "Modular Version"
3.3. Firestore Database Model
3.4. Important Types of Firestore Objects
3.5. Writing Data to Firestore
3.6. Reading Data from Firestore

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

1 de 108 23/5/22 18:48

mailto:G.Wagner@b-tu.de
mailto:G.Wagner@b-tu.de
https://js-firebase-tutorials.netlify.app/minimal/index_files/1-MinimalApp.pdf
https://js-firebase-tutorials.netlify.app/minimal/index_files/1-MinimalApp.pdf
https://js-firebase-minimal.web.app/
https://js-firebase-minimal.web.app/
https://js-firebase-tutorials.netlify.app/minimal/index_files/1-MinimalApp.zip
https://js-firebase-tutorials.netlify.app/minimal/index_files/1-MinimalApp.zip
mailto:G.Wagner@b-tu.de
mailto:G.Wagner@b-tu.de
https://js-firebase-tutorials.netlify.app/minimal/index.html#lof
https://js-firebase-tutorials.netlify.app/minimal/index.html#lof
https://js-firebase-tutorials.netlify.app/minimal/index.html#lot
https://js-firebase-tutorials.netlify.app/minimal/index.html#lot
https://js-firebase-tutorials.netlify.app/minimal/index.html#Forewords
https://js-firebase-tutorials.netlify.app/minimal/index.html#Forewords
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch1
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch1
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch1
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch1
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch1
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch1
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch1
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-TheWorldWideWeb
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-TheWorldWideWeb
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-TheWorldWideWeb
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-TheWorldWideWeb
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-TheWorldWideWeb
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-TheWorldWideWeb
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-HTMLandXML
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-HTMLandXML
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-HTMLandXML
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-HTMLandXML
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-HTMLandXML
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-HTMLandXML
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-StylingWebDocumentsAndUserInterfacesWithCSS
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-StylingWebDocumentsAndUserInterfacesWithCSS
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-StylingWebDocumentsAndUserInterfacesWithCSS
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-StylingWebDocumentsAndUserInterfacesWithCSS
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-StylingWebDocumentsAndUserInterfacesWithCSS
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-StylingWebDocumentsAndUserInterfacesWithCSS
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptTheAssemblyLanguageOfThe-Web
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptTheAssemblyLanguageOfThe-Web
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptTheAssemblyLanguageOfThe-Web
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptTheAssemblyLanguageOfThe-Web
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptTheAssemblyLanguageOfThe-Web
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptTheAssemblyLanguageOfThe-Web
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-AccessibilityForWebApps
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-AccessibilityForWebApps
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-AccessibilityForWebApps
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-AccessibilityForWebApps
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-AccessibilityForWebApps
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-AccessibilityForWebApps
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Foundations-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Foundations-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Foundations-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Foundations-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Foundations-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Foundations-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch2
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch2
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch2
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch2
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch2
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch2
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch2
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-AsynchronousProgramming
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-AsynchronousProgramming
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-AsynchronousProgramming
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-AsynchronousProgramming
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-AsynchronousProgramming
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-AsynchronousProgramming
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-UsingES6Modules
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-UsingES6Modules
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-UsingES6Modules
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-UsingES6Modules
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-UsingES6Modules
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-UsingES6Modules
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-JavaScript-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-JavaScript-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-JavaScript-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-JavaScript-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-JavaScript-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-JavaScript-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch3
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch3
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch3
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch3
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch3
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch3
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch3
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-IntroducingFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-IntroducingFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-IntroducingFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-IntroducingFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-IntroducingFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-IntroducingFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseJSSDK
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseJSSDK
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseJSSDK
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseJSSDK
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseJSSDK
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseJSSDK
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseDataModel
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseDataModel
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseDataModel
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseDataModel
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseDataModel
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseDataModel
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-TypesOfFirestoreObjects
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-TypesOfFirestoreObjects
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-TypesOfFirestoreObjects
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-TypesOfFirestoreObjects
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-TypesOfFirestoreObjects
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-TypesOfFirestoreObjects
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-AddingData
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-AddingData
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-AddingData
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-AddingData
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-AddingData
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-AddingData
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-ReadingData
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-ReadingData
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-ReadingData
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-ReadingData
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-ReadingData
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-ReadingData

3.7. Quiz Questions

Chapter 4. Building a Minimal Web App with Plain JS and Firebase in Seven Steps
4.1. Step 1: Set up the Firebase Project
4.2. Step 2: Write the Model Code
4.3. Step 3: Write the Start Page
4.4. Step 4: Implement the Create Use Case
4.5. Step 5: Implement the Retrieve/List All Use Case
4.6. Step 6: Implement the Update Use Case
4.7. Step 7: Implement the Delete Use Case
4.8. Points of Attention
4.9. Quiz Questions
4.10. Practice Projects

Chapter 5. Adding Access Control to the Minimal App with Firebase
5.1. Access Control
5.2. Using Firebase for Access Control
5.3. Step 1: Initialize Firebase Authentication
5.4. Step 2: Prepare UI for Authentication and Authorization
5.5. Step 3: Implement the Access Control Handling Solution
5.6. Step 4: Implement Sign up and Sign in
5.7. Step 5: Implement User Authentication Action Handlers
5.8. Step 6: Configure Security Rules
5.9. Points of Attention
5.10. Quiz Questions

A. Appendix: "Hello World" Web App with Firebase and Firestore

Glossary

Resourses

List of Figures

2-1. The built-in JavaScript classes Object and Function

4-1. The object type Book

4-2. Firestore Security Rules

4-3. Creating the first Firestore document/record

4-4. Through the Firebase project initialization process

4-5. Firebase Local Emulator Suite

4-6. Setting up and Testing Security Rules

4-7. The object type Movie

5-1. Enabling sign-in providers in Firebase

5-2. Email action handler templates

A-1. Creating a Firestore document for the 'Hello World' App

A-2. The "Hello World" Web App App

List of Tables

2-1. An example of an entity table representing a collection of books

2-2. Required and desirable features of JS code patterns for classes

3-1. Firestore Data types

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

2 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Building-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Building-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Building-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Building-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Building-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Building-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step2-WriteModel
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step2-WriteModel
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step2-WriteModel
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step2-WriteModel
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step2-WriteModel
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step2-WriteModel
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step3-WriteStartPage
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step3-WriteStartPage
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step3-WriteStartPage
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step3-WriteStartPage
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step3-WriteStartPage
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step3-WriteStartPage
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step4-ImplementCreate
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step4-ImplementCreate
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step4-ImplementCreate
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step4-ImplementCreate
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step4-ImplementCreate
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step4-ImplementCreate
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step5-ImplementRetrieve
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step5-ImplementRetrieve
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step5-ImplementRetrieve
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step5-ImplementRetrieve
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step5-ImplementRetrieve
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step5-ImplementRetrieve
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step6-ImplementUpdate
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step6-ImplementUpdate
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step6-ImplementUpdate
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step6-ImplementUpdate
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step6-ImplementUpdate
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step6-ImplementUpdate
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step7-ImplementDelete
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step7-ImplementDelete
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step7-ImplementDelete
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step7-ImplementDelete
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step7-ImplementDelete
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step7-ImplementDelete
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PointsOfAttention
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PointsOfAttention
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PointsOfAttention
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PointsOfAttention
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PointsOfAttention
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PointsOfAttention
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Firebase-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Firebase-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Firebase-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Firebase-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Firebase-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Firebase-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch5
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch5
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch5
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch5
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch5
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch5
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch5
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-ConceptsOfAccessControl
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-ConceptsOfAccessControl
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-ConceptsOfAccessControl
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-ConceptsOfAccessControl
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-ConceptsOfAccessControl
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-ConceptsOfAccessControl
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-UsingFirebaseForAccessControl
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-UsingFirebaseForAccessControl
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-UsingFirebaseForAccessControl
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-UsingFirebaseForAccessControl
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-UsingFirebaseForAccessControl
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-UsingFirebaseForAccessControl
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step1-InitializeFirebaseAuth
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step1-InitializeFirebaseAuth
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step1-InitializeFirebaseAuth
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step1-InitializeFirebaseAuth
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step1-InitializeFirebaseAuth
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step1-InitializeFirebaseAuth
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step2-PrepareUI
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step2-PrepareUI
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step2-PrepareUI
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step2-PrepareUI
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step2-PrepareUI
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step2-PrepareUI
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step3-ImplementAC
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step3-ImplementAC
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step3-ImplementAC
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step3-ImplementAC
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step3-ImplementAC
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step3-ImplementAC
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step4-ImplementSignUpSignIn
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step4-ImplementSignUpSignIn
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step4-ImplementSignUpSignIn
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step4-ImplementSignUpSignIn
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step4-ImplementSignUpSignIn
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step4-ImplementSignUpSignIn
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step6-ConfigureSecurityRules
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step6-ConfigureSecurityRules
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step6-ConfigureSecurityRules
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step6-ConfigureSecurityRules
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step6-ConfigureSecurityRules
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step6-ConfigureSecurityRules
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-PointsOfAttention
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-PointsOfAttention
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-PointsOfAttention
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-PointsOfAttention
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-PointsOfAttention
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-PointsOfAttention
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-AC-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-AC-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-AC-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-AC-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-AC-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-AC-QuizQuestions
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Resources
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Resources
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__3
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__3
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__3
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__3
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__3
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__3
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__6
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__6
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__6
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__6
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__6
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__6
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__7
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__7
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__7
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__7
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__7
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lof__7
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step1-InitializeFirebaseAuth__lof__9
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step1-InitializeFirebaseAuth__lof__9
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step1-InitializeFirebaseAuth__lof__9
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step1-InitializeFirebaseAuth__lof__9
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step1-InitializeFirebaseAuth__lof__9
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step1-InitializeFirebaseAuth__lof__9
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler__lof__10
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler__lof__10
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler__lof__10
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler__lof__10
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler__lof__10
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler__lof__10
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp__lof__11
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp__lof__11
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp__lof__11
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp__lof__11
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp__lof__11
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp__lof__11
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp__lof__12
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp__lof__12
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp__lof__12
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp__lof__12
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp__lof__12
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp__lof__12
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__lot__1
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__lot__1
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__lot__1
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__lot__1
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__lot__1
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__lot__1
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseDataModel__lot__3
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseDataModel__lot__3
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseDataModel__lot__3
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseDataModel__lot__3
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseDataModel__lot__3
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-FirebaseDataModel__lot__3

3-2. Names of the most important Firestore objects

4-1. A collection of book objects represented as a table

4-2. Change of Firebase SDK's function names

4-3. Sample data

Foreword

This tutorial is Part 1 of our series of six tutorials about model-based development of front-end web applications with plain
JavaScript and the Firebase cloud platform, more specifically Firebase JavaScript/Web SDK version 9, better known as the
"modular version". It shows how to build such an app with minimal effort, not using any (third-party) framework or library.
While libraries and frameworks may help to increase productivity, they also create black-box dependencies and overhead,
and they are not good for learning how to do it yourself.

This tutorial provides theoretically underpinned and example-based learning materials and supports learning by doing it
yourself.

A front-end web app can be provided by any web server, but it is executed on the user's computer device (smartphone, tablet
or notebook), and not on the remote web server. A front-end web app with data storage in the cloud can be a multi-user
application, which is shared with other, possibly concurrent, users.

The minimal version of a JS/Firebase front-end data management application discussed in this tutorial only includes a
minimum of the overall functionality required for a complete app. It takes care of only one object type ("books") and
supports the four standard data management operations (Create/Retrieve/Update/Delete), but it needs to be enhanced by
styling the user interface with CSS rules, and by adding further important parts of the app's overall functionality. The other
parts of the tutorial are:

!"Part 2: Handling constraint validation.

!"Part 3: Dealing with enumerations.

!"Part 4: Managing unidirectional associations, such as the associations between books and publishers, assigning a
publisher to a book, and between books and authors, assigning authors to a book.

!"Part 5: Managing bidirectional associations, such as the associations between books and publishers and between books
and authors, also assigning books to authors and to publishers.

!"Part 6: Handling subtype (inheritance) relationships between object types.

Chapter 1. A Quick Tour of the Foundations of Web Apps

1.1. The World Wide Web (WWW)

After the Internet had been established in the 1980'ies, Tim Berners-Lee developed the idea and the first implementation of
the WWW in 1989 at the European research institution CERN in Geneva, Switzerland. The WWW (or, simply, "the Web")
is based on the Internet technologies TCP/IP (the Internet Protocol) and DNS (the Domain Name System). Initially, the Web
consisted of

1. the Hypertext Transfer Protocol (HTTP),

2. the Hypertext Markup Language (HTML), and

3. web server programs, acting as HTTP servers, as well as web 'user agents' (such as browsers), acting as HTTP clients.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

3 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-TypesOfFirestoreObjects__lot__4
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-TypesOfFirestoreObjects__lot__4
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-TypesOfFirestoreObjects__lot__4
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-TypesOfFirestoreObjects__lot__4
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-TypesOfFirestoreObjects__lot__4
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-TypesOfFirestoreObjects__lot__4
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lot__6
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lot__6
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lot__6
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lot__6
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lot__6
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__lot__6
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__lot__7
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__lot__7
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__lot__7
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__lot__7
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__lot__7
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__lot__7
https://js-firebase-tutorials.netlify.app/validation/
https://js-firebase-tutorials.netlify.app/validation/
https://js-firebase-tutorials.netlify.app/enumeration/
https://js-firebase-tutorials.netlify.app/enumeration/
https://js-firebase-tutorials.netlify.app/unidir-associations/
https://js-firebase-tutorials.netlify.app/unidir-associations/
https://js-firebase-tutorials.netlify.app/bidir-associations/
https://js-firebase-tutorials.netlify.app/bidir-associations/
https://js-firebase-tutorials.netlify.app/subtyping/
https://js-firebase-tutorials.netlify.app/subtyping/
http://en.wikipedia.org/wiki/Tim_Berners-Lee
http://en.wikipedia.org/wiki/Tim_Berners-Lee
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__http
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__http
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__http
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__css
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__css
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__css

Later, further important technology components have been added to this set of basic web technologies:

!"the page/document style language Cascading Style Sheets (CSS) in 1995,

!"the web programming language JavaScript in 1995,

!"the Extensible Markup Language (XML), as the basis of web formats like SVG and RDF/XML, in 1998,

!"the XML-based Scalable Vector Graphics (SVG) format in 2001,

!"the Resource Description Framework (RDF) for knowledge representation on the Web in 2004.

1.2. HTML and XML

HTML allows to mark up (or describe) the structure of a human-readable web document or web user interface, while XML
allows to mark up the structure of all kinds of documents, data files and messages, whether they are human-readable or not.
XML can also be used as the basis for defining a version of HTML that is called XHTML.

1.2.1 XML documents

XML provides a syntax for expressing structured information in the form of an XML document with nested elements and
their attributes. The specific elements and attributes used in an XML document can come from any vocabulary, such as
public standards or (private) user-defined XML formats. XML is used for specifying

!"document formats, such as XHTML5, the Scalable Vector Graphics (SVG) format or the DocBook format,

!"data interchange file formats, such as the Mathematical Markup Language (MathML) or the Universal Business
Language (UBL),

!"message formats, such as the web service message format SOAP

1.2.2 Unicode and UTF-8

XML is based on Unicode, which is a platform-independent character set that includes almost all characters from most of
the world's script languages including Hindi, Burmese and Gaelic. Each character is assigned a unique integer code in the
range between 0 and 1,114,111. For example, the Greek letter π has the code 960, so it can be inserted in an XML document
as π using the XML entity syntax.

Unicode includes legacy character sets like ASCII and ISO-8859-1 (Latin-1) as subsets.

The default encoding of an XML document is UTF-8, which uses only a single byte for ASCII characters, but three bytes for
less common characters.

Almost all Unicode characters are legal in a well-formed XML document. Illegal characters are the control characters with
code 0 through 31, except for the carriage return, line feed and tab. It is therefore dangerous to copy text from another (non-
XML) text to an XML document (often, the form feed character creates a problem).

1.2.3 XML namespaces

Generally, namespaces help to avoid name conflicts. They allow to reuse the same (local) name in different namespace
contexts. Many computational languages have some form of namespace concept, for instance, Java and PHP.

XML namespaces are identified with the help of a namespace URI, such as the SVG namespace URI "http://www.w3.org

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

4 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__css
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__css
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__css
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__xml
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__xml
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__xml
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__svg
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__svg
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__svg
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__rdf
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__rdf
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__rdf
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/

/2000/svg", which is associated with a namespace prefix, such as svg. Such a namespace represents a collection of names,
both for elements and attributes, and allows namespace-qualified names of the form prefix:name, such as svg:circle as a
namespace-qualified name for SVG circle elements.

A default namespace is declared in the start tag of an element in the following way:

<<hhttmmll xmlns="http://www.w3.org/1999/xhtml">>

This example shows the start tag of the HTML root element, in which the XHTML namespace is declared as the default
namespace.

The following example shows an SVG namespace declaration for an svg element embedded in an HTML document:

<<hhttmmll xmlns="http://www.w3.org/1999/xhtml">>
<<hheeaadd>>

 ...
<<//hheeaadd>>
<<bbooddyy>>
<<ffiigguurree>>
<<ffiiggccaappttiioonn>>Figure 1: A blue circle<<//ffiiggccaappttiioonn>>
<<ssvvgg:svg xmlns: ssvvggb>="http://www.w3.org/2000/svg">
<<ssvvgg:circle cx="100" cy="100" r="50" fill="blue"/>

<<//ssvvgg::ssvvgg>>
<<//ffiigguurree>>

<<//bbooddyy>>
<<//hhttmmll>>

1.2.4 Correct XML documents

XML defines two syntactic correctness criteria. An XML document must be well-formed, and if it is based on a grammar (or
schema), then it must also be valid with respect to that grammar, or, in other words, satisfy all rules of the grammar.

An XML document is called well-formed, if it satisfies the following syntactic conditions:

1. There must be exactly one root element.

2. Each element has a start tag and an end tag; however, empty elements can be closed as <phone/> instead of <phone>
</phone>.

3. Tags don't overlap. For instance, we cannot have

<<aauutthhoorr>><<nnaammee>>Lee Hong<<//aauutthhoorr>><<//nnaammee>>

4. Attribute names are unique within the scope of an element. For instance, the following code is not correct:

<<aattttaacchhmmeenntt file="lecture2.html" file="lecture3.html"//>>

An XML document is called valid against a particular grammar (such as a DTD or an XML Schema), if

1. it is well-formed,

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

5 de 108 23/5/22 18:48

2. and it respects the grammar.

1.2.5 The evolution of HTML

The World-Wide Web Committee (W3C) has developed the following important versions of HTML:

!"1997: HTML 4 as an SGML-based language,

!"2000: XHTML 1 as an XML-based clean-up of HTML 4,

!"2014: (X)HTML 5 in cooperation (and competition) with the WHAT working group supported by browser vendors.

As the inventor of the Web, Tim Berners-Lee developed a first version of HTML in 1990. A few years later, in 1995,
Tim Berners-Lee and Dan Connolly wrote the HTML 2 standard, which captured the common use of HTML elements
at that time. In the following years, HTML has been used and gradually extended by a growing community of early
WWW adopters. This evolution of HTML, which has led to a messy set of elements and attributes (called "tag soup"),
has been mainly controlled by browser vendors and their competition with each other. The development of XHTML
in 2000 was an attempt by the W3C to clean up this mess, but it neglected to advance HTML's functionality towards a
richer user interface, which was the focus of the WHAT working group led by Ian Hickson who can be considered as
the mastermind and main author of HTML 5 and many of its accompanying JavaScript APIs that made HTML fit for
mobile apps.

HTML was originally designed as a structure description language, and not as a presentation description language. But
HTML4 has a lot of purely presentational elements such as font. XHTML has been taking HTML back to its roots,
dropping presentational elements and defining a simple and clear syntax, in support of the goals of

!"device independence,

!"accessibility, and

!"usability.

We adopt the symbolic equation

HTML = HTML5 = XHTML5

stating that when we say "HTML" or "HTML5", we actually mean XHTML5

because we prefer the clear syntax of XML documents over the liberal and confusing HTML4-style syntax that is also
allowed by HTML5.

The following simple example shows the basic code template to be used for any HTML document:

<!DOCTYPE html>
<<hhttmmll xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">>
<<hheeaadd>>
<<mmeettaa charset="UTF-8" //>>

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

6 de 108 23/5/22 18:48

http://en.wikipedia.org/wiki/WHATWG
http://en.wikipedia.org/wiki/WHATWG
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://www.ietf.org/rfc/rfc1866.txt
http://www.ietf.org/rfc/rfc1866.txt
http://www.ietf.org/rfc/rfc1866.txt
http://en.wikipedia.org/wiki/WHATWG
http://en.wikipedia.org/wiki/WHATWG
http://en.wikipedia.org/wiki/Ian_Hickson
http://en.wikipedia.org/wiki/Ian_Hickson

<<ttiittllee>>XHTML5 Template Example<<//ttiittllee>>
<<mmeettaa name="viewport" content="width=device-width, initial-scale=1"//>>

<<//hheeaadd>>
<<bbooddyy>>
<<hh11>>XHTML5 Template Example<<//hh11>>
<<sseeccttiioonn>><<hh22>>First Section Title<<//hh22>>

 ...
<<//sseeccttiioonn>>

<<//bbooddyy>>
<<//hhttmmll>>

Notice that in line 1, the HTML5 document type is declared, such that browsers are instructed to use the HTML5 document
object model (DOM). In the html start tag in line 2, using the default namespace declaration attribute xmlns, the XHTML
namespace URI http://www.w3.org/1999/xhtml is declared as the default namespace for making sure that browsers,
and other tools, understand that all non-qualified element names like html, head, body, etc. are from the XHTML
namespace.

Also in the html start tag, we set the (default) language for the text content of all elements (here to "en" standing for
English) using both the xml:lang attribute and the HTML lang attribute. This attribute duplication is a small price to pay
for having a hybrid document that can be processed both by HTML and by XML tools.

Finally, in line 4, using an (empty) meta element with a charset attribute, we set the HTML document's character
encoding to UTF-8, which is also the default for XML documents.

1.2.6 HTML forms

For user-interactive web applications, the web browser needs to render a user interface (UI). The traditional metaphor for a
software application's UI is that of a form. The special elements for data input, data output and user actions are called form
controls or UI widgets. In HTML, a form element is a section of a web page consisting of block elements that contain form
controls and labels on those controls.

Users complete a form by entering text into input fields and by selecting items from choice controls, including dropdown
selection lists, radio button groups and checkbox groups. A completed form is submitted with the help of a submit button.
When a user submits a form, it is normally sent to a web server either with the HTTP GET method or with the HTTP POST
method. The standard encoding for the submission is called URL-encoded. It is represented by the Internet media type
application/x-www-form-urlencoded. In this encoding, spaces become plus signs, and any other reserved characters
become encoded as a percent sign and hexadecimal digits, as defined in RFC 1738.

Each form control has both an initial value and a current value, both of which are strings. The initial value is specified with
the control element's value attribute, except for the initial value of a textarea element, which is given by its initial
contents. The control's current value is first set to the initial value. Thereafter, the control's current value may be modified
through user interaction or scripts. When a form is submitted for processing, some controls have their name paired with their
current value and these pairs are submitted with the form.

Labels are associated with a control by including the control as a child element within a label element (implicit labels), or
by giving the control an id value and referencing this ID in the for attribute of the label element (explicit labels).

In the simple user interfaces of our "Getting Started" applications, we only need four types of form controls:

1. single line input fields created with an <input name="..." /> element,

2. single line output fields created with an <output name="..." /> element,

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

7 de 108 23/5/22 18:48

3. push buttons created with a <button type="button">...</button> element, and

4. dropdown selection lists created with a select element of the following form:

<<sseelleecctt name="...">>
<<ooppttiioonn value="value1">> option1 <<//ooppttiioonn>>
<<ooppttiioonn value="value2">> option2 <<//ooppttiioonn>>

 ...
<<//sseelleecctt>>

An example of an HTML form with implicit labels for creating such a user interface is

<<ffoorrmm id="Book">>
<<pp>><<llaabbeell>>ISBN: <<oouuttppuutt name="isbn" //>><<//llaabbeell>><<//pp>>
<<pp>><<llaabbeell>>Title: <<iinnppuutt name="title" //>><<//llaabbeell>><<//pp>>
<<pp>><<llaabbeell>>Year: <<iinnppuutt name="year" //>><<//llaabbeell>><<//pp>>
<<pp>><<bbuuttttoonn type="button">>Save<<//bbuuttttoonn>><<//pp>>

<<//ffoorrmm>>

In an HTML-form-based data management user interface, we have a correspondence between the different kinds of
properties defined in the model classes of an app and the form controls used for the input and output of their values. We have
to distinguish between various kinds of model class attributes, which are mapped to various kinds of form fields. This
mapping is also called data binding.

In general, an attribute of a model class can always be represented in the user interface by a plain input control (with the
default setting type="text"), no matter which datatype has been defined as the range of the attribute in the model class.
However, in special cases, other types of input controls (for instance, type="date"), or other widgets, may be used. For
instance, if the attribute's range is an enumeration, a select control or, if the number of possible choices is small enough
(say, less than 8), a radio button group can be used.

1.3. Styling Web Documents and User Interfaces with CSS

While HTML is used for defining the content structure of a web document or a web user interface, the Cascading Style
Sheets (CSS) language is used for defining the presentation style of web pages, which means that you use it for telling the
browser how you want your HTML (or XML) rendered: using which layout of content elements, which fonts and text styles,
which colors, which backgrounds, and which animations. Normally, these settings are made in a separate CSS file that is
associated with an HTML file via a special link element in the HTML's head.

A first sketch of CSS was proposed in October 1994 by Håkon W. Lie who later became the CTO of the browser
vendor Opera. While the official CSS1 standard dates back to December 1996, "most of it was hammered out on a
whiteboard in Sophia-Antipolis" by Håkon W. Lie together with Bert Bos in July 1995 (as he explains in an
interview).

CSS is based on a form of rules that consist of selectors, which select the document element(s) to which a rule applies, and a
list of property-value pairs that define the styling of the selected element(s) with the help of CSS properties such as font-

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

8 de 108 23/5/22 18:48

http://www.w3.org/People/howcome/p/cascade.html
http://www.w3.org/People/howcome/p/cascade.html
https://en.wikipedia.org/wiki/H%C3%A5kon_Wium_Lie
https://en.wikipedia.org/wiki/H%C3%A5kon_Wium_Lie
http://www.w3.org/TR/REC-CSS1/
http://www.w3.org/TR/REC-CSS1/
https://medium.com/net-magazine/interview-with-h%C3%A5kon-wium-lie-f3328aeca8ed
https://medium.com/net-magazine/interview-with-h%C3%A5kon-wium-lie-f3328aeca8ed

size or color. There are two fundamental mechanisms for computing the CSS property values for any page element as a
result of applying the given set of CSS rules: inheritance and the cascade.

The basic element of a CSS layout is a rectangle, also called "box", with an inner content area, an optional border, an
optional padding (between content and border) and an optional margin around the border. This structure is defined by the
CSS box model.

We will not go deeper into CSS in this tutorial, since our focus here is on the logic and functionality of an app, and not so
much on its beauty.

1.4. JavaScript - "the assembly language of the Web"

JavaScript was developed in 10 days in May 1995 by Brendan Eich then working at Netscape, as the HTML scripting
language for their browser Navigator 2 (more about history). Brendan Eich said (at the O'Reilly Fluent conference in
San Francisco in April 2015): "I did JavaScript in such a hurry, I never dreamed it would become the assembly
language for the Web".

JavaScript is a dynamic functional object-oriented programming language that can be used for

1. Enriching a web page by

!"generating browser-specific HTML content or CSS styling,

!"inserting dynamic HTML content,

!"producing special audio-visual effects (animations).

2. Enriching a web user interface by

!"implementing advanced user interface components,

!"validating user input on the client side,

!"automatically pre-filling certain form fields.

3. Implementing a front-end web application with local or remote data storage, as described in the book Building Front-End
Web Apps with Plain JavaScript.

4. Implementing a front-end component for a distributed web application with remote data storage managed by a back-end
component, which is a server-side program that is traditionally written in a server-side language such as PHP, Java or C#,
but can nowadays also be written in JavaScript with NodeJS.

5. Implementing a complete distributed web application where both the front-end and the back-end components are
JavaScript programs.

The version of JavaScript that is currently fully supported by modern web browsers is called "ECMAScript 2015", or simply
"ES2015", but the following versions, (ES2016, ES2017, ...), are already partially supported by current browsers and back-

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

9 de 108 23/5/22 18:48

http://learnlayout.com/
http://learnlayout.com/
http://en.wikipedia.org/wiki/Brendan_Eich
http://en.wikipedia.org/wiki/Brendan_Eich
http://en.wikipedia.org/wiki/Netscape
http://en.wikipedia.org/wiki/Netscape
http://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
http://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
http://web-engineering.info/JsFrontendApp-Book
http://web-engineering.info/JsFrontendApp-Book
http://web-engineering.info/JsFrontendApp-Book
http://web-engineering.info/JsFrontendApp-Book

end JS environments.

1.4.1 JavaScript as an object-oriented language

JavaScript is object-oriented, but in a different way than classical OO programming languages such as Java and C++. In
JavaScript, classes, unlike objects and functions, have not been first-class citizens until ES2015 has introduced a class
syntax. Before ES2015, classes had to be defined by following a code pattern in the form of special JS objects: either as
constructor functions or as factory objects. Notice that when using (the syntactic sugar of) ES2015 class declarations,
what is really defined internally, is still a constructor function.

However, objects can also be created without instantiating a class, in which case they are untyped, and properties as well as
methods can be defined for specific objects independently of any class definition. At run time, properties and methods can be
added to, or removed from, any object and class. This dynamism of JavaScript allows powerful forms of meta-
programming, such as defining your own concepts of classes and enumerations (and other special datatypes).

1.4.2 Further reading about JavaScript

Good open access books about JavaScript are

!"Speaking JavaScript, by Dr. Axel Rauschmayer.

!"Eloquent JavaScript, by Marijn Haverbeke.

!"Building Front-End Web Apps with Plain JavaScript, by Gerd Wagner

1.5. Accessibility for Web Apps

The recommended approach to providing accessibility for web apps is defined by the Accessible Rich Internet Applications
(ARIA) standard. As summarized by Bryan Garaventa in his article on different forms of accessibility, there are 3 main
aspects of accessibility for interactive web technologies: 1) keyboard accessibility, 2) screen reader accessibility, and 3)
cognitive accessibility.

Further reading on ARIA:

1. How browsers interact with screen readers, and where ARIA fits in the mix by Bryan Garaventa

2. The Accessibility Tree Training Guide by whatsock.com

3. The ARIA Role Conformance Matrices by whatsock.com

4. Mozilla's ARIA overview article

5. W3C's ARIA Authoring Practices

1.6. Quiz Questions

1.6.1 Question 1: Well-formed XML documents

Which of the following statements represent a requirement for a well-formed XML document? Select one or more:

☐ The root element must have a namespace attribute.

☐ There must be one and only one top level element.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

10 de 108 23/5/22 18:48

http://speakingjs.com/es5/index.html
http://speakingjs.com/es5/index.html
http://eloquentjavascript.net/
http://eloquentjavascript.net/
http://web-engineering.info/JsFrontendApp-Book
http://web-engineering.info/JsFrontendApp-Book
http://www.linkedin.com/profile/view?id=26751364&trk=groups-post-b-author
http://www.linkedin.com/profile/view?id=26751364&trk=groups-post-b-author
https://www.linkedin.com/grp/post/4512178-134539009
https://www.linkedin.com/grp/post/4512178-134539009
http://lnkd.in/kue-Q8
http://lnkd.in/kue-Q8
http://whatsock.com/training
http://whatsock.com/training
http://whatsock.com/training/matrices
http://whatsock.com/training/matrices
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://www.w3.org/TR/wai-aria-practices/
https://www.w3.org/TR/wai-aria-practices/

☐ All non-empty elements must have a start-tag and an end-tag with matching names.

☐ Element names must be lower case.

1.6.2 Question 2: Well-formed XML

Which of the following fragments are well-formed XML? Select one or more:

☐ This text is bold. and this is italicized and bold. and this is just italics.

☐ <STRONGER>This text is bold. <emph>And this is italicized and bold.</STRONGER> And this is just italics.
</emph>

☐ <stronger>This text is bold. <emph>And this is italicized and bold.</emph></stronger><emph>And this is just italics.
</emph>

☐ <emph><STRONGER>This is some text <bold>and this is more text. Here is even more</bold> text.</STRONGER>
</emph>

1.6.3 Question 3: Valid XHTML

Which of the following fragments are valid XHTML? Select one or more:

☐ <html xmlns="http://www.w3.org/1999/xhtml">
 <head><title>My Title</title></head>
 <body>Jump!</body>
</html>

☐ <html xmlns="http://www.w3.org/1999/xhtml">
 <head><title>My Title</title></head>
 <body><p>Lorem ipsum...</p></body>
</html>

☐ <h:html xmlns:h="http://www.w3.org/1999/xhtml">
 <h:head><h:meta charset="utf-8"></h:head>
 <h:body><h:p>Lorem ipsum...</h:p></h:body>
</h:html>

☐ <h:html xmlns:h="http://www.w3.org/1999/xhtml">
 <h:head><h:title>My Title</h:title></h:head>
 <h:body><h:div>Lorem ipsum...</h:div></h:body>
</h:html>

☐ <h:html xmlns:h="http://www.w3.org/1999/xhtml">
 <head><title>My Title</title></head>
 <body><p>Lorem ipsum...</p></body>
</h:html>

1.6.4 Question 4: Valid XHTML5

Which of the following are correct statements about an XHTML5 document? Select one or more:

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

11 de 108 23/5/22 18:48

☐ The root element must be <xhtml>.

☐ The document must be well-formed.

☐ The root element and all its descendant elements must be in the namespace "http://www.w3.org/1999/xhtml".

☐ Case does not matter for element names, so both H1 and h1 can be used.

1.6.5 Question 5: HTML forms

Recall that an HTML form is a section of a document consisting of block elements that contain controls and labels on those
controls. Which of the following form elements represent correct forms? Select one or more:

☐ <form>
 <div><label>ISBN: <input name="isbn" /></label></div>
 <div><label>Title: <input name="title" /></label></div>
</form>

☐ <form>
 <div>
 <label for="isbn">ISBN: </label><input id="isbn" name="isbn" />
 <label for="title">title: </label><input id="title" name="title" />
 </div>
</form>

☐ <form>
 <div><label>ISBN: </label><input name="isbn" /></div>
 <div><label>title: </label><input name="title" /></div>
</form>

☐ <form>
 <label>ISBN: <input name="isbn" /></label>

 <label>Title: <input name="title" /></label>
</form>

☐ <form>
 <div><label for="isbn">ISBN: </label><input name="isbn" /></div>
 <div><label for="title">title: </label><input name="title" /></div>
</form>

Chapter 2. More on JavaScript

2.1. JavaScript Basics

In this summary we try to take all important points of the classical JavaScript summary by Douglas Crockford into
consideration.

2.1.1 Types and data literals in JavaScript

JavaScript has three primitive datatypes: string, number and boolean, and we can test if a variable v holds a value of
such a type with the help of the JS operator typeof as, for instance, in typeof v === "number".

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

12 de 108 23/5/22 18:48

http://javascript.crockford.com/survey.html
http://javascript.crockford.com/survey.html
http://www.crockford.com/
http://www.crockford.com/

There are five reference types: Object, Array, Function, Date and RegExp. Arrays, functions, dates and regular
expressions are special types of objects, but, conceptually, dates and regular expressions are primitive data values, and
happen to be implemented in the form of wrapper objects.

The types of variables, array elements, function parameters and return values are not declared and are normally not checked
by JavaScript engines. Type conversion (casting) is performed automatically.

The value of a variable may be

!"a data value: either a string, a number, or a boolean;

!"an object reference: either referencing an ordinary object, or an array, function, date, or regular expression;

!"the special data value null, which is typically used as a default value for initializing an object variable;

!"the special data value undefined, which is the implicit initial value of all variables that have been declared, but not
initialized.

A string is a sequence of Unicode characters. String literals, like "Hello world!", 'A3F0', or the empty string "", are enclosed
in single or double quotes. Two string expressions can be concatenated with the + operator, and checked for equality with
the triple equality operator:

iiff (firstName + lastName === "JamesBond") ...

The number of characters of a string can be obtained by applying the length attribute to a string:

console.log("Hello world!".length); // 12

All numeric data values are represented in 64-bit floating point format with an optional exponent (like in the numeric data
literal 3.1e10). There is no explicit type distinction between integers and floating point numbers. If a numeric expression
cannot be evaluated to a number, its value is set to NaN ("not a number"), which can be tested with the built-in predicate
isNaN(expr).

The built-in function, Number.isInteger allows testing if a number is an integer. For making sure that a numeric value is
an integer, or that a string representing a number is converted to an integer, one has to apply the built-in function parseInt.
Similarly, a string representing a decimal number can be converted to this number with parseFloat. For converting a
number n to a string, the best method is using String(n).

There are two predefined Boolean data literals, true and false, and the Boolean operator symbols are the exclamation
mark ! for NOT, the double ampersand && for AND, and the double bar || for OR. When a non-Boolean value is used in a
condition, or as an operand of a Boolean expression, it is implicitly converted to a Boolean value according to the following
rules. The empty string, the (numerical) data literal 0, as well as undefined and null, are mapped to false, and all other
values are mapped to true. This conversion can be performed explicitly with the help of the double negation operation, like
in the equality test !!undefined === false, which evaluates to true.

In addition to strings, numbers and Boolean values, also calendar dates and times are important types of primitive data
values, although they are not implemented as primitive values, but in the form of wrapper objects instantiating Date. Notice
that Date objects do, in fact, not really represent dates, but rather date-time instants represented internally as the number of
milliseconds since 1 January, 1970 UTC. For converting the internal value of a Date object to a human-readable string, we
have several options. The two most important options are using either the standard format of ISO date/time strings of the
form "2015-01-27", or localized formats of date/time strings like "27.1.2015" (for simplicity, we have omitted the time part

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

13 de 108 23/5/22 18:48

of the date/time strings in these examples). When x instanceof Date, then x.toISOString() provides the ISO
date/time string, and x.toLocaleDateString() provides the localized date/time string. Given any date string ds, ISO or
localized, new Date(ds) creates a corresponding date object.

For testing the equality (or inequality) of two primitive data vales, always use the triple equality symbol === (and !==)
instead of the double equality symbol == (and !=). Otherwise, for instance, the number 2 would be the same as the string
"2", since the condition (2 == "2") evaluates to true in JavaScript.

Assigning an empty array literal, as in var a = [] is the same as, but more concise than and therefore preferred to,
invoking the Array() constructor without arguments, as in var a = new Array().

Assigning an empty object literal, as in var o = {} is the same as, but more concise than and therefore preferred to,
invoking the Object() constructor without arguments, as in var o = new Object(). Notice, however, that an empty
object literal {} is not really an empty object, as it contains property slots and method slots inherited from
Object.prototype. So, a truly empty object (without any slots) has to be created with null as prototype, like in var
emptyObject = Object.create(null).

A summary of type testing is provided in the following table:

Type Example values Test if xx of type

string "Hello world!", 'A3F0' typeof x === "string"

boolean true, false typeof x === "boolean"

(floating point)
number

-2.75, 0, 1, 1.0, 3.1e10 typeof x === "number"

integer -2, 0, 1, 250 Number.isInteger(x)

Object
{}, {num:3, denom:4}, {isbn:"006251587X," title:"Weaving the
Web"}, {"one":1, "two":2, "three":3}

excluding null: x instanceof
Object

including null: typeof x ===
"object"

Array [], ["one"], [1,2,3], [1,"one", {}] Array.isArray(x)

Function function () { return "one"+1;} typeof x === "function"

Date new Date("2015-01-27") x instanceof Date

RegExp /(\w+)\s(\w+)/ x instanceof RegExp

A summary of type conversions is provided in the following table:

Type Convert to string Convert string to type

boolean String(x) Boolean(y)

(floating point) number String(x) parseFloat(y)

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

14 de 108 23/5/22 18:48

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp

Type Convert to string Convert string to type

integer String(x) parseInt(y)

Object x.toString() or JSON.stringify(x) JSON.parse(y)

Array x.toString() or JSON.stringify(x) y.split() or JSON.parse(y)

Function x.toString() new Function(y)

Date x.toISOString() new Date(y)

RegExp x.toString() new RegExp(y)

2.1.2 Variable scope

In ES5, there have only been two kinds of scope for variables declared with var: the global scope (with window as the
context object) and function scope, but no block scope. Consequently, declaring a variable with var within a code block is
confusing and should be avoided. For instance, although this is a frequently used pattern, even by experienced JavaScript
programmers, it is a pitfall to declare the counter variable of a for loop in the loop, as in

ffuunnccttiioonn foo() {
ffoorr (vvaarr ii==00; i < 10; i++) {

 ... // do something with i
 }
}

Instead of obtaining a variable that is scoped to the block defined by the for loop, JavaScript is interpreting this code (by
means of "hoisting" variable declarations) as:

ffuunnccttiioonn foo() {
vvaarr ii==00;
ffoorr (i=0; i < 10; i++) {

 ... // do something with i
 }
}

Therefore all function-scoped variable declarations (with var) should be placed at the beginning of a function. When a
variable is to be scoped to a code block, such as to a for loop, it has to be declared with the keyword let, as in the
following example:

ffuunnccttiioonn foo() {
ffoorr (lleett i=0; i < 10; i++) {

 ... // do something with i
 }
}

2.1.3 Frozen, or immutable, variables

Whenever a variable is supposed to be immutable (having a frozen value), it should be declared with the keyword const:

ccoonnsstt pi = 3.14159;

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

15 de 108 23/5/22 18:48

It is generally recommended that variables be declared with const whenever it is clear that their values will never be
changed. This helps catching errors and it allows the JS engine to optimize code execution.

2.1.4 Strict Mode

Starting from ES5, we can use strict mode for getting more runtime error checking. For instance, in strict mode, all variables
must be declared. An assignment to an undeclared variable throws an exception.

We can turn strict mode on by typing the following statement as the first line in a JavaScript file or inside a <script>
element:

'use strict';

It is generally recommended to use strict mode, except when code depends on libraries that are incompatible with strict
mode.

2.1.5 Different kinds of objects

JS objects are different from classical OO/UML objects. In particular, they need not instantiate a class. And they can have
their own (instance-level) methods in the form of method slots, so they do not only have (ordinary) property slots, but also
method slots. In addition they may also have key-value slots. So, they may have three different kinds of slots, while classical
objects (called "instance specifications" in UML) only have property slots.

A JS object is essentially a set of name-value-pairs, also called slots, where names can be property names, function names or
keys of a map. Objects can be created in an ad-hoc manner, using JavaScript's object literal notation (JSON), without
instantiating a class:

vvaarr person1 = { lastName:"Smith", firstName:"Tom"};

An empty object with no slots is created in the following way:

vvaarr o1 = OObbjjeecctt.create(null);

Whenever the name in a slot is an admissible JavaScript identifier, the slot may be either a property slot, a method slot or a
key-value slot. Otherwise, if the name is some other type of string (in particular when it contains any blank space), then the
slot represents a key-value slot, which is a map element, as explained below.

The name in a property slot may denote either

1. a data-valued property, in which case the value is a data value or, more generally, a data-valued expression;

or

2. an object-valued property, in which case the value is an object reference or, more generally, an object expression.

The name in a method slot denotes a JS function (better called method), and its value is a JS function definition expression.

Object properties can be accessed in two ways:

1. Using the dot notation (like in C++/Java):

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

16 de 108 23/5/22 18:48

http://speakingjs.com/es5/ch07.html#strict_mode
http://speakingjs.com/es5/ch07.html#strict_mode
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__slots
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__slots
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__slots
https://js-firebase-tutorials.netlify.app/minimal/index.html#glossary__slots
http://mothereff.in/js-variables
http://mothereff.in/js-variables

person1.lastName = "Smith"

2. Using a map notation:

person1["lastName"] = "Smith"

JS objects can be used in many different ways for different purposes. Here are five different use cases for, or possible
meanings of, JS objects:

1. A record is a set of property slots like, for instance,

vvaarr myRecord = {firstName:"Tom", lastName:"Smith", age:26}

2. A map (also called 'associative array', 'dictionary', 'hash map' or 'hash table' in other languages) supports look-ups of
values based on keys like, for instance,

vvaarr numeral2number = {"one":"1", "two":"2", "three":"3"}

which associates the value "1" with the key "one", "2" with "two", etc. A key need not be a valid JavaScript identifier, but
can be any kind of string (e.g. it may contain blank spaces).

3. An untyped object does not instantiate a class. It may have property slots and method slots like, for instance,

vvaarr person1 = {
 lastName: "Smith",
 firstName: "Tom",
 getFullName: ffuunnccttiioonn () {

rreettuurrnn tthhiiss.firstName +" "+ tthhiiss.lastName;
 }
};

Within the body of a method slot of an object, the special variable this refers to the object.

4. A namespace (within the global scope) may be defined in the form of an untyped object referenced by a global object
variable, the name of which represents a namespace prefix. For instance, the following object variable provides the main
namespace of an application based on the Model-View-Controller (MVC) architecture paradigm where we have three
subnamespaces corresponding to the three parts of an MVC application:

vvaarr myApp = { model:{}, view:{}, ctrl:{} };

A more advanced namespace mechanism, which allows avoiding global scope names for variables, functions and classes,
is provided by ES6 modules.

5. A typed object instantiates a class that is defined either by a JavaScript constructor function or by a factory object. See
“Defining and using classes”.

2.1.6 Array lists

A JS array represents, in fact, the logical data structure of an array list, which is a list where each list item can be accessed
via an index number (like the elements of an array). Using the term 'array' without saying 'JS array' creates a terminological

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

17 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__defining-using-classes
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__defining-using-classes

ambiguity. But for simplicity, we will sometimes just say 'array' instead of 'JS array'.

A variable may be initialized with a JS array literal:

vvaarr a = [1,2,3];

Because they are array lists, JS arrays can grow dynamically: it is possible to use indexes that are greater than the length of
the array. For instance, after the array variable initialization above, the array held by the variable a has the length 3, but still
we can assign further array elements, and may even create gaps, like in

a[3] = 4;
a[5] = 5;

The contents of an array a are processed with the help of a standard for loop with a counter variable counting from the first
array index 0 to the last array index, which is a.length-1:

ffoorr (let i=0; i < a.length; i++) { ...}

Since arrays are special types of objects, we sometimes need a method for finding out if a variable represents an array. We
can test, if a variable a represents an array by applying the predefined datatype predicate isArray as in Array.isArray(
a).

For adding a new element to an array, we append it to the array using the push operation as in:

a.ppuusshh(newElement);

For appending (all elements of) another array b to an array a, we push all the elements of b to a with the help of the spread
operator ..., like so:

a.ppuusshh(...b);

For deleting an element at position i from an array a, we use the predefined array method splice as in:

a.sspplliiccee(i, 1);

For searching a value v in an array a, we can use the predefined array method indexOf, which returns the position, if
found, or -1, otherwise, as in:

iiff (a.iinnddeexxOOff(v) > -1) ...

For looping over an array a, there are two good options: either use a classical for loop or an ES6 for-of loop. In any case,
we can use a classical for (counter variable) loop:

ffoorr (let i=0; i < a.length; i++) {
 console.log(a[i]);
}

If no counter variable is needed, however, the best option is using a for-of loop (introduced in ES6):

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

18 de 108 23/5/22 18:48

ffoorr (ccoonnsstt elem ooff a) {
 console.log(elem);
}

Notice that in a for-of loop, the looping variable (here: elem) can be declared as a frozen local variable with const
whenever it is not re-assigned in the loop body.

Using the array looping method forEach is no longer a good idea: it's similar, but inferior to a for-of loop since it is
syntactically more convoluted and cannot be interrupted with break.

For cloning an array a, we can use the array function slice in the following way:

vvaarr clone = a.slice(0);

Alternatively, we can use a new technique based on the ES6 spread operator:

vvaarr clone = [...a];

2.1.7 Maps

A map (also called 'hash map', 'associative array' or 'dictionary') provides a mapping from keys to their associated values.
Traditionally, before the built-in Map object has been added to JS (in ES6), maps have been implemented in the form of plain
JS objects where the keys are string literals that may include blank spaces:

vvaarr emptyMap = OObbjjeecctt.create(null); // instead of {}
vvaarr myTranslation = {
"my house": "mein Haus",
"my boat": "mein Boot",
"my horse": "mein Pferd"

}

Alternatively, a proper map can be constructed with the help of the Map constructor:

vvaarr emptyMap = nneeww MMaapp();
vvaarr myTranslation = nneeww MMaapp([
 ["my house", "mein Haus"],
 ["my boat", "mein Boot"],
 ["my horse", "mein Pferd"]
])

A traditional map (as a plain JS object) is processed with the help of a loop where we loop over all keys using the predefined
function Object.keys(m), which returns an array of all keys of a map m. For instance,

ffoorr (ccoonnsstt key of OObbjjeecctt.keys(myTranslation)) {
 console.log(`The translation of ${key} is ${myTranslation[key]}`);
}

A proper map (i.e. a Map object) can be processed with the help of a for...of loop in one of the following ways:

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

19 de 108 23/5/22 18:48

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of

// processing both keys and values
ffoorr (ccoonnsstt [[kkeeyy,, vvaalluuee]] of myTranslation) {
 console.log(`The translation of ${key} is ${value}`);
}
// processing only keys
ffoorr (ccoonnsstt key of myTranslation.kkeeyyss()) {
 console.log(`The translation of ${key} is ${myTranslation.ggeett(key)}`);
}
// processing only values
ffoorr (ccoonnsstt value of myTranslation.vvaalluueess()) {
 console.log(value)
}

For adding a new entry to a traditional map, we simply associate the new value with its key as in:

myTranslation["my car"] = "mein Auto";

For adding a new entry to a proper map, we use the set operation:

myTranslation.sseett("my car", "mein Auto");

For deleting an entry from a traditional map, we can use the predefined delete operator as in:

ddeelleettee myTranslation["my boat"];

For deleting an entry from a proper map, we can use the Map::delete method as in:

myTranslation.ddeelleettee("my boat");

For testing if a traditional map contains an entry for a certain key value, such as for testing if the translation map contains an
entry for "my bike" we can check the following:

iiff ("my bike" iinn myTranslation) ...

For testing if a proper map contains an entry for a certain key value, we can use the Boolean-valued has method:

iiff (myTranslation.hhaass("my bike")) ...

For cloning a traditional map m, we can use the composition of JSON.stringify and JSON.parse. We first serialize m to
a string representation with JSON.stringify, and then de-serialize the string representation to a map object with JSON.parse:

vvaarr clone = JSON.parse(JSON.stringify(m));

Notice that this method works well if the map contains only simple data values or (possibly nested) arrays/maps containing
simple data values. In other cases, e.g. if the map contains Date objects, we have to write our own clone method.
Alternatively, we could use a new technique based on the ES6 spread operator:

vvaarr clone = { ...m };

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

20 de 108 23/5/22 18:48

For cloning a proper map m, we can use the Map constructor in the following way:

vvaarr clone = nneeww Map(m);

Since proper maps (defined as instances of Map) do not have the overhead of properties inherited from Object.prototype and
operations on them, such as adding and deleting entries, are faster, they are preferable to using ordinary objects as maps.
Only in cases where it is important to be compatible with older browsers that do not support Map, it is justified to use
ordinary objects for implementing maps.

2.1.8 Important types of basic data structures

In summary, there are four types of important basic data structures:

1. array lists, such as ["one","two","three"], which are special JS objects called 'arrays', but since they are dynamic,
they are rather array lists as defined in the Java programming language.

2. records, which are special JS objects, such as {firstName:"Tom", lastName:"Smith"}, as discussed above,

3. maps, which can be realized as ordinary JS objects having only key-value slots, such as {"one":1, "two":2,
"three":3}, or as Map objects, as discussed above,

4. entity tables, like for instance the table shown below, which are special maps where the values are entity records with a
standard ID (or primary key) slot, such that the keys of the map are the standard IDs of these entity records.

Table 2-1. An example of an entity table representing a collection of books

Key Value

006251587X { isbn:"006251587X," title:"Weaving the Web", year:2000 }

0465026567 { isbn:"0465026567," title:"Gödel, Escher, Bach", year:1999 }

0465030793 { isbn:"0465030793," title:"I Am A Strange Loop", year:2008 }

Notice that our distinction between records, (traditional) maps and entity tables is a purely conceptual distinction, and not a
syntactical one. For a JavaScript engine, both {firstName:"Tom", lastName:"Smith"} and
{"one":1,"two":2,"three":3} are just objects. But conceptually, {firstName:"Tom", lastName:"Smith"} is a
record because firstName and lastName are intended to denote properties (or fields), while
{"one":1,"two":2,"three":3} is a map because "one" and "two" are not intended to denote properties/fields, but
are just arbitrary string values used as keys for a map.

Making such conceptual distinctions helps in the logical design of a program, and mapping them to syntactic distinctions,
even if they are not interpreted differently, helps to better understand the intended computational meaning of the code and
therefore improves its readability.

2.1.9 Procedures, methods and functions

Generally, a (parametrized) procedure is like a sub-program that can be called (with a certain number of arguments) any
number of times from within a program. Whenever a procedure returns a value, it is called a function. In OOP, procedures
are called methods, if they are defined in the context of a class or of an object.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

21 de 108 23/5/22 18:48

In JavaScript, procedures are called "functions", no matter if they return a value or not. As shown below in Figure 2-1. The
built-in JavaScript classes Object and Function, JS functions are special JS objects, having an optional name property
and a length property providing their number of parameters. If a variable v references a function can be tested with

iiff (ttyyppeeooff v === "function") {...}

Being JS objects implies that JS functions can be stored in variables, passed as arguments to functions, returned by
functions, have properties and can be changed dynamically. Therefore, JS functions are first-class citizens, and JavaScript
can be viewed as a functional programming language.

The general form of a JS function definition is an assignment of a JS function expression to a variable:

vvaarr myMethod = ffuunnccttiioonn theNameOfMyMethod(params) {
 ...
}

where params is a comma-separated list of parameters (or a parameter record), and theNameOfMyMethod is optional.
When it is omitted, the method/function is anonymous. In any case, JS functions are normally invoked via a variable that
references the function. In the above case, this means that the JS function is invoked with myMethod(), and not with
theNameOfMyMethod(). However, a named JS function can be invoked by name from within the function (when the
function is recursive). Consequently, a recursive JS function must be named.

Anonymous function expressions are called lambda expressions (or shorter lambdas) in other programming languages.

As an example of an anonymous function expression being passed as an argument in the invocation of another (higher-
order) function, we can take a comparison function being passed to the predefined function sort for sorting the elements of
an array list. Such a comparison function must return a negative number if its first argument is smaller than its second
argument, it must return 0 if both arguments are of the same rank, and it must return a positive number if the second
argument is smaller than the first one. In the following example, we sort a list of lists of 2 numbers in lexicographic order:

vvaarr list = [[1,2],[1,3],[1,1],[2,1]];
list.sort(ffuunnccttiioonn (x,y) {
rreettuurrnn x[0] === y[0] ? x[1]-y[1] : x[0]-y[0]);

});

Alternatively, we can express the anonymous comparison function in the form of an arrow function expression:

list.sort((x,y) ==>> x[0] === y[0] ? x[1]-y[1] : x[0]-y[0]);

A JS function declaration has the following form:

ffuunnccttiioonn theNameOfMyMethod(params) {...}

It is equivalent to the following named function definition:

vvaarr theNameOfMyMethod = ffuunnccttiioonn theNameOfMyMethod(params) {...}

that is, it creates both a function with name theNameOfMyMethod and a variable theNameOfMyMethod referencing this
function.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

22 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript

JS functions can have inner functions. The closure mechanism allows a JS function using variables (except this) from its
outer scope, and a function created in a closure remembers the environment in which it was created. In the following
example, there is no need to pass the outer scope variable result to the inner function via a parameter, as it is readily
available:

vvaarr ssuumm = ffuunnccttiioonn (numbers) {
vvaarr result = 0;
ffoorr (ccoonnsstt n of numbers) {

 result = result + n;
 }
rreettuurrnn result;

};
console.log(sum([1,2,3,4])); // 10

When a method/function is executed, we can access its arguments within its body by using the built-in arguments object,
which is "array-like" in the sense that it has indexed elements and a length property, and we can iterate over it with a
normal for loop, but since it's not an instance of Array, the JS array methods (such as the forEach looping method)
cannot be applied to it. The arguments object contains an element for each argument passed to the method. This allows
defining a method without parameters and invoking it with any number of arguments, like so:

vvaarr ssuumm = ffuunnccttiioonn () {
vvaarr result = 0;
ffoorr (let i=0; i < arguments.length; i++) {

 result = result + arguments[i];
 }
rreettuurrnn result;

};
console.log(sum(0,1,1,2,3,5,8)); // 20

A method defined on the prototype of a constructor function, which can be invoked on all objects created with that
constructor, such as Array.prototype.forEach, where Array represents the constructor, has to be invoked with an
instance of the class as context object referenced by the this variable (see also the next section on classes). In the following
example, the array numbers is the context object in the invocation of forEach:

vvaarr numbers = [1,2,3]; // create an instance of Array
numbers.ffoorrEEaacchh(ffuunnccttiioonn (n) {
 console.log(n);
});

Whenever such a prototype method is to be invoked not with a context object, but with an object as an ordinary argument,
we can do this with the help of the JS function ccaallll method that takes an object, on which the method is invoked, as its
first parameter, followed by the parameters of the method to be invoked. For instance, we can apply the forEach looping
method to the array-like object arguments in the following way:

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

23 de 108 23/5/22 18:48

vvaarr ssuumm = ffuunnccttiioonn () {
vvaarr result = 0;
AArrrraayy.pprroottoottyyppee.ffoorrEEaacchh..ccaallll(arguments, ffuunnccttiioonn (n) {

 result = result + n;
 });
rreettuurrnn result;

};

A two-argument variant of the Function.prototype.call method, collecting all arguments of the method to be invoked
in an array-like object, is Function.prototype.apply. The first argument to both call and apply becomes this
inside the function, and the rest are passed through. So, f.call(x, y, z) is the same as f.apply(x, [y, z]).

Whenever a method defined for a prototype is to be invoked without a context object, or when a method defined in a method
slot (in the context) of an object is to be invoked without its context object, we can bind its this variable to a given object
with the help of the JS function bbiinndd method (Function.prototype.bind). This allows creating a shortcut for
invoking a method, as in var querySel = document.querySelector.bind(document), which allows to use
querySel instead of document.querySelector.

The option of immediately invoked JS function expressions can be used for obtaining a namespace mechanism that is
superior to using a plain namespace object, since it can be controlled which variables and methods are globally exposed and
which are not. This mechanism is also the basis for JS module concepts. In the following example, we define a namespace
for the model code part of an app, which exposes some variables and the model classes in the form of constructor functions:

myApp.model = ffuunnccttiioonn () {
vvaarr appName = "My app's name";
vvaarr someNonExposedVariable = ...;
ffuunnccttiioonn ModelClass1() {...}
ffuunnccttiioonn ModelClass2() {...}
ffuunnccttiioonn someNonExposedMethod(...) {...}
rreettuurrnn {

 appName: appName,
 ModelClass1: ModelClass1,
 ModelClass2: ModelClass2
 }
}(); // immediately invoked

2.1.10 Defining and using classes

The concept of a classis fundamental in object-oriented programming. Objects instantiate (or are classified by) a class. A
class defines the properties and methods (as a blueprint) for the objects created with it.

Having a class concept is essential for being able to implement a data model in the form of model classes in a Model-View-
Controller (MVC) architecture. However, classes and their inheritance/extension mechanism are over-used in classical OO
languages, such as in Java, where all variables and procedures have to be defined in the context of a class and, consequently,
classes are not only used for implementing object types (or model classes), but also as containers for many other purposes in
these languages. This is not the case in JavaScript where we have the freedom to use classes for implementing object types
only, while keeping method libraries in namespace objects.

Any code pattern for defining classes in JavaScript should satisfy five requirements. First of all, (1) it should allow to define
a class name, a set of (instance-level) properties, preferably with the option to keep them 'private', a set of (instance-level)
methods, and a set of class-level properties and methods. It's desirable that properties can be defined with a range/type, and
with other meta-data, such as constraints. There should also be two introspection features: (2) an is-instance-of predicate

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

24 de 108 23/5/22 18:48

that can be used for checking if an object is a direct or indirect instance of a class, and (3) an instance-level property for
retrieving the direct type of an object. In addition, it is desirable to have a third introspection feature for retrieving the direct
supertype of a class. And finally, there should be two inheritance mechanisms: (4) property inheritance and (5) method
inheritance. In addition, it is desirable to have support for multiple inheritance and multiple classifications, for allowing
objects to play several roles at the same time by instantiating several role classes.

There was no explicit class definition syntax in JavaScript before ES6. Different code patterns for defining classes in
JavaScript have been proposed and are being used in different frameworks. But they do often not satisfy the five
requirements listed above. The two most important approaches for defining classes are:

1. In the form of a constructor function that achieves method inheritance via the prototype chain and allows to create new
instances of a class with the help of the new operator. This is the classical approach recommended by Mozilla in their
JavaScript Guide. This is also the approach implemented in ES6 with the new class definition syntax.

2. In the form of a factory object that uses the predefined Object.create method for creating new instances of a class. In
this approach, the prototype chain method inheritance mechanism is replaced by a "copy & append" mechanism. Eric
Elliott has argued that factory-based classes are a viable alternative to constructor-based classes in JavaScript (in fact, he
even condemns the use of classical inheritance with constructor-based classes, throwing out the baby with the bath
water).

When building an app, we can use both kinds of classes, depending on the requirements of the app. Since we often need to
define class hierarchies, and not just single classes, we have to make sure, however, that we don't mix these two alternative
approaches within the same class hierarchy. While the factory-based approach, as exemplified by mODELcLASSjs, has
many advantages, which are summarized in Table 2-2. Required and desirable features of JS code patterns for classes, the
constructor-based approach enjoys the advantage of higher performance object creation.

Table 2-2. Required and desirable features of JS code patterns for classes

Class feature Constructor-based approach Factory-based approach mODELcLASSjs

Define properties and methods yes yes yes

is-instance-of predicate yes yes yes

direct type property yes yes yes

direct supertype property of classes no possibly yes

Property inheritance yes yes yes

Method inheritance yes yes yes

Multiple inheritance no possibly yes

Multiple classifications no possibly yes

Allow object pools no yes yes

Constructor-based classes

Only in ES6, a user-friendly syntax for constructor-based classes has been introduced. In Step 1.a), a base class

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

25 de 108 23/5/22 18:48

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model
http://chimera.labs.oreilly.com/books/1234000000262/ch03.html#fluentstyle_javascript
http://chimera.labs.oreilly.com/books/1234000000262/ch03.html#fluentstyle_javascript
http://chimera.labs.oreilly.com/books/1234000000262/ch03.html#fluentstyle_javascript
http://chimera.labs.oreilly.com/books/1234000000262/ch03.html#fluentstyle_javascript
http://web-engineering.info/tech/mODELcLASSjs/validation-tutorial.html
http://web-engineering.info/tech/mODELcLASSjs/validation-tutorial.html
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__JScodePaterns
https://en.wikipedia.org/wiki/Object_pool_pattern
https://en.wikipedia.org/wiki/Object_pool_pattern

Person is defined with two properties, firstName and lastName, as well as with an (instance-level) method
toString and a static (class-level) method checkLastName:

ccllaassss Person {
ccoonnssttrruuccttoorr(first, last) {
tthhiiss.firstName = first;
tthhiiss.lastName = last;

 }
ttooSSttrriinngg() {
rreettuurrnn tthhiiss.firstName + " " +

tthhiiss.lastName;
 }
ssttaattiicc cchheecckkLLaassttNNaammee(ln) {
iiff (ttyyppeeooff ln !== "string" ||

 ln.trim()==="") {
 console.log("Error: invalid last name!");
 }
 }
}

In Step 1.b), class-level ("static") properties are defined:

Person.iinnssttaanncceess = {};

Finally, in Step 2, a subclass is defined with additional properties and methods that possibly override the
corresponding superclass methods:

ccllaassss SSttuuddeenntt eexxtteennddss Person {
ccoonnssttrruuccttoorr(first, last, studNo) {
ssuuppeerr.constructor(first, last);

tthhiiss.ssttuuddNNoo = studNo;
 }
// method overrides superclass method
ttooSSttrriinngg() {
rreettuurrnn ssuuppeerr.toString() + "(" +

tthhiiss.studNo +")";
 }
}

In ES5, we can define a base class with a subclass in the form of constructor functions, following a code pattern
recommended by Mozilla in their JavaScript Guide, as shown in the following steps.

Step 1.a) First define the constructor function that implicitly defines the properties of the class by assigning them the values
of the constructor parameters when a new object is created:

ffuunnccttiioonn PPeerrssoonn(first, last) {
tthhiiss.ffiirrssttNNaammee = first;
tthhiiss.llaassttNNaammee = last;

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

26 de 108 23/5/22 18:48

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Details_of_the_Object_Model

}

Notice that within a constructor, the special variable this refers to the new object that is created when the constructor is
invoked.

Step 1.b) Next, define the instance-level methods of the class as method slots of the object referenced by the constructor's
prototype property:

PPeerrssoonn.pprroottoottyyppee.ttooSSttrriinngg = ffuunnccttiioonn () {
rreettuurrnn tthhiiss.firstName + " " + tthhiiss.lastName;

}

Step 1.c) Class-level ("static") methods can be defined as method slots of the constructor function itself (recall that, since JS
functions are objects, they can have slots), as in

Person.checkLastName = ffuunnccttiioonn (ln) {
iiff (ttyyppeeooff ln !== "string" || ln.trim()==="") {

 console.log("Error: invalid last name!");
 }
}

Step 1.d) Finally, define class-level ("static") properties as property slots of the constructor function:

Person.iinnssttaanncceess = {};

Step 2.a) Define a subclass with additional properties:

ffuunnccttiioonn SSttuuddeenntt(first, last, studNo) {
// invoke superclass constructor
PPeerrssoonn..ccaallll(tthhiiss, first, last);

// define and assign additional properties
tthhiiss.ssttuuddNNoo = studNo;

}

By invoking the supertype constructor with Person.call(this, ...) for any new object created as an instance of the
subtype Student, and referenced by this, we achieve that the property slots created in the supertype constructor (
firstName and lastName) are also created for the subtype instance, along the entire chain of supertypes within a given
class hierarchy. In this way we set up a property inheritance mechanism that makes sure that the own properties defined for
an object on creation include the own properties defined by the supertype constructors.

In Step 2b), we set up a mechanism for method inheritance via the constructor's prototype property. We assign a new
object created from the supertype's prototype object to the prototype property of the subtype constructor and adjust the
prototype's constructor property:

// Student inherits from Person
SSttuuddeenntt.pprroottoottyyppee = OObbjjeecctt.create(

PPeerrssoonn.pprroottoottyyppee);
// adjust the subtype's constructor property
Student.pprroottoottyyppee.constructor = Student;

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

27 de 108 23/5/22 18:48

With Object.create(Person.prototype) we create a new object with Person.prototype as its prototype and
without any own property slots. By assigning this object to the prototype property of the subclass constructor, we achieve
that the methods defined in, and inherited from, the superclass are also available for objects instantiating the subclass. This
mechanism of chaining the prototypes takes care of method inheritance.

Step 2c) Define a subclass method that overrides a superclass method:

Student.pprroottoottyyppee.ttooSSttrriinngg = ffuunnccttiioonn () {
rreettuurrnn Person.pprroottoottyyppee.toString.call(tthhiiss) +

"(" + tthhiiss.studNo + ")";
};

An instance of a constructor-based class is created by applying the new operator to the constructor and providing suitable
arguments for the constructor parameters:

vvaarr pers1 = nneeww PPeerrssoonn("Tom","Smith");

The method toString is invoked on the object pers1 by using the 'dot notation':

alert("The full name of the person is: " + ppeerrss11..ttooSSttrriinngg(()));

When an object o is created with o = new C(...), where C references a named function with name "C", the type (or class)
name of o can be retrieved with the introspective expression o.constructor.name, which returns "C".

In JavaScript, a prototype object is an object with method slots (and sometimes also property slots) that can be inherited by
other objects via JavaScript's method/property slot look-up mechanism. This mechanism follows the prototype chain
defined by the built-in reference property __proto__ (with a double underscore prefix and suffix) for finding methods or
properties. As shown below in Figure 2-1. The built-in JavaScript classes Object and Function, every constructor
function has a reference to a prototype object as the value of its reference property prototype. When a new object is
created with the help of new, its __proto__ property is set to the constructor's prototype property.

For instance, after creating a new object with f = new Foo(), it holds that Object.getPrototypeOf(f), which is the
same as f.__proto__, is equal to Foo.prototype. Consequently, changes to the slots of Foo.prototype affect all
objects that were created with new Foo(). While every object has a __proto__ property slot (except Object), only
objects constructed with new have a constructor property slot.

Figure 2-1. The built-in JavaScript classes Object and Function

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

28 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript

hasOwnProperty(in p : String) : Boolean
isPrototypeOf(in obj : Object) : Boolean
create(in proto : Object, in prop-def : Object) : Object
defineProperties(in obj : Object, in prop-def : Object)
keys(in obj : Object) : Array
getPrototypeOf(in obj : Object) : Object
...()

Object

apply(in thisObj : Object, in arguments : Array)
call(in thisObj : Object, in arg1, in arg2, in ...)
bind(in thisObj : Object, in arg1, in arg2, in ...)
...()

name[0..1] : String
length[1] : Integer

Function

*

constructor

0..1

prototype

1

*

__proto__

1

*

Notice that we can also retrieve the prototype of an object with Object.getPrototypeOf(o), as an alternative to
o.__proto__.

Factory-based classes

In this approach we define a JS object Person (actually representing a class) with a special create method that invokes the
predefined Object.create method for creating objects of type Person:

vvaarr PPeerrssoonn = {
 typeName: "Person",

pprrooppeerrttiieess: {
 firstName: {range:"NonEmptyString", label:"First name",
 writable: true, enumerable: true},
 lastName: {range:"NonEmptyString", label:"Last name",
 writable: true, enumerable: true}
 },

mmeetthhooddss: {
 getFullName: ffuunnccttiioonn () {

rreettuurrnn tthhiiss.firstName +" "+ tthhiiss.lastName;
 }
 },

ccrreeaattee: ffuunnccttiioonn (slots) {
// create object
vvaarr obj = OObbjjeecctt..ccrreeaattee(tthhiiss.methods, tthhiiss.properties);
// add special property for *direct type* of object
OObbjjeecctt.defineProperty(obj, "ttyyppee",

 {vvaalluuee:: tthhiiss, writable: false, enumerable: true});
// initialize object
ffoorr (prop of OObbjjeecctt.keys(slots)) {
iiff (prop iinn tthhiiss.properties) obj[prop] = slots[prop];

 }
rreettuurrnn obj;

 }

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

29 de 108 23/5/22 18:48

};

Notice that the JS object Person actually represents a factory-based class. An instance of such a factory-based class is
created by invoking its create method:

vvaarr pers1 = Person.create({firstName:"Tom", lastName:"Smith"});

The method getFullName is invoked on the object pers1 of type Person by using the 'dot notation', like in the
constructor-based approach:

alert("The full name of the person are: " + ppeerrss11..ggeettFFuullllNNaammee(()));

Notice that each property declaration for an object created with Object.create has to include the 'descriptors'
writable: true and enumerable: true, as in lines 5 and 7 of the Person object definition above.

In a general approach, like in the mODELcLASSjs library for model-based development, we would not repeatedly define
the create method in each class definition, but rather have a generic constructor function for defining factory-based
classes. Such a factory-based class constructor, like mODELcLASS, would also provide an inheritance mechanism by
merging the own properties and methods with the properties and methods of the superclass. This mechanism is also called
Inheritance by Concatenation.

2.2. Asynchronous Programming

In programming, we often have the situation that, when calling a possibly time-consuming input/output (I/O) operation (or
any long-running operation, e.g., for performing a complex computation), the program execution has to wait for its result
being returned before it can go on. Calling such an operation and waiting for its result, while the main program's further
execution (and its entire thread) is blocked, represents a synchronous operation call. The implied waiting/blocking poses a
problem for a JS program that is being executed in a browser thread since during the waiting time the user interface (in a
browser tab) would be frozen, which is not acceptable from a usability point of view and therefore not accepted by browsers.

Consequently, in JavaScript, it is not possible to call an I/O operation, e.g., for fetching data from a webpage (with the built-
in XMLHttpRequest or fetch API) or for accessing a remote database (via HTTP request-response messaging)
synchronously. These types of operations have to be performed in an asynchronous (non-blocking) manner, instead.

Asynchronous programming concepts in JavaScript have undergone an evolution from callbacks to promises to generators
(coroutines) and, most recently, to asynchronous procedure calls with await procedure invocation expressions and
asynchronous procedure definitions with async. Each evolution step has made asynchronous programming a little bit easier
for those who have taken the effort to get familiar with it.

Due to this evolution, operations of older JS input/output APIs available in the form of built-in objects, like
XMLHttpRequest for HTTP messaging or indexedDB for object database management, work with callbacks, while newer
APIs, like fetch for HTTP messaging, work with promises and can also be invoked with await.

Callbacks

A simple asynchronous programming approach consists of defining a procedure that is to be executed as soon as the
asynchronous operation completes. This allows to continue the program execution after the invocation of the asynchronous
operation, however, without assuming that the operation result is available. But how does the execution environment know,
which procedure to call after completing the asynchronous operation?

In JS, we can pass a JS function as an argument in the invocation of the asynchronous operation. A callback is such a JS

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

30 de 108 23/5/22 18:48

http://web-engineering.info/tech/mODELcLASSjs/validation-tutorial.html
http://web-engineering.info/tech/mODELcLASSjs/validation-tutorial.html
http://aaditmshah.github.io/why-prototypal-inheritance-matters/
http://aaditmshah.github.io/why-prototypal-inheritance-matters/

function.

Consider the following example. An external JS file can be dynamically loaded (in the context of an already loaded webpage
with associated JS code) by (1) programmatically creating an HTML script element DOM object with the file's URL as
the value of the script's src attribute, and (2) inserting the newly created script element after the last child node of the
document's head element:

ffuunnccttiioonn llooaaddJJssFFiillee(fileURL) {
ccoonnsstt scriptEl = document.createElement("script");

 script.src = fileURL;
 document.head.aappppeenndd(scriptEl);
}

When the new script element is inserted into the document's DOM, e.g., with the help of the asynchronous DOM operation
append (at the end of the loadJsFile procedure), the browser will load the JS file and then parse and execute it, which
will take some time. Let's assume that we have a JS code file containing the definition of a function addTwoNumbers that
does what its name says and we first load the file and then invoke the function in the following way:

loadJsFile("addTwoNumbers.js");
console.log(addTwoNumbers(1, 2));

This wouldn't work. We would get an error message instead of the sum of 1 and 2, since the intended result of the first
statement, the availability of the addTwoNumbers function, is not (yet) obtained when the second statement is executed.

We can fix this by adding a callback procedure as a second parameter to the loadJsFile procedure and assign it as an
event handler of the JS file load event :

ffuunnccttiioonn loadJsFile(fileURL, ccaallllbbaacckk) {
ccoonnsstt scriptEl = document.createElement("script");

 script.src = fileURL;
 script.oonnllooaadd = ccaallllbbaacckk;
 document.head.append(scriptEl);
}

Now when calling loadJsFile we can provide the code to be executed after loading the "addTwoNumbers.js" file in an
anonymous callback function:

loadJsFile("addTwoNumbers.js", ffuunnccttiioonn () {
 console.log(addTwoNumbers(1, 2)); // results in 3
]);

Since the loading of the JS file can fail, we should better add some error handling for this case by defining an event handler
for the error event. We can handle possible errors within the callback procedure by calling it with an error argument:

ffuunnccttiioonn loadJsFile(fileURL, ccaallllbbaacckk) {
ccoonnsstt scriptEl = document.createElement("script");

 script.src = fileURL;
 script.oonnllooaadd = ccaallllbbaacckk;
 script.oonneerrrroorr = ffuunnccttiioonn () {

ccaallllbbaacckk(nneeww EErrrroorr(`Script load error ffoorr ${fileURL}`));

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

31 de 108 23/5/22 18:48

 };
 document.head.append(scriptEl);
}

Now we call loadJsFile with an anonymous callback function having an error parameter:

loadJsFile("addTwoNumbers.js", ffuunnccttiioonn (error) {
iiff (!error) console.log(addTwoNumbers(1,2)); // results in 3
eellssee console.log(error);

]);

Callbacks work well as an asynchronous programming approach in simple cases. But when it is necessary to perform several
asynchronous operations in a sequence, one quickly ends up in a "callback hell", a term that refers to the resulting deeply
nested code structures that are hard to read and maintain.

Promises

A promise (also called future in some programming languages, like in Python) is a special object that provides the deferred
result of an asynchronous operation to the code that waits for this result. A promise object is initially in the state pending. If
the asynchronous operation succeeds (in the case when the resolve function is called with an argument providing the
result value), the promise state is changed from pending to fulfilled. If it fails (in the case when the reject function is
called with an argument providing the error), the promise state is changed from pending to rejected.

An example of a built-in asynchronous operation that returns a promise is import for dynamically loading JS code files
(and ES6 modules). We can use it instead of the user-defined loadJsFile procedure discussed in the previous section for
loading the addTwoNumbers.js file and subsequently executing code that uses the addTwoNumbers function (or reporting
an error if the loading failed):

iimmppoorrtt("addTwoNumbers.js")
.tthheenn(ffuunnccttiioonn () {
 console.log(addTwoNumbers(1, 2));
})
.ccaattcchh(ffuunnccttiioonn (error) {
 console.log(error);
});

This example code shows that on the promise object returned by import we can call the predefined functions then and
catch:

then
for continuing the execution only when the import operation is completed with a fulfilled promise, and

catch
for processing the error result of a rejected promise.

The general approach of asynchronous programming with promises requires each asynchronous operation to return a
promise object that typically provides either a result value, when the promise is fulfilled, or an error value, when the promise
is rejected. For user-defined asynchronous procedures, this means that they have to create a promise as their return value, as
shown in the promise-valued loadJsFile function presented below.

A promise object can be created with the help of the Promise constructor by providing an anonymous function expression

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

32 de 108 23/5/22 18:48

as the argument of the Promise constructor invocation (with two parameters resolve and reject representing JS
functions). We do this in the following example of a promise-valued loadJsFile function, which is a variant of the
previously discussed callback-based loadJsFile procedure:

ffuunnccttiioonn llooaaddJJssFFiillee(fileURL) {
rreettuurrnn nneeww PPrroommiissee(ffuunnccttiioonn (rreessoollvvee, rreejjeecctt) {
ccoonnsstt scriptEl = document.createElement("script");

 scriptEl.src = fileURL;
 scriptEl.onllooaadd = rreessoollvvee;
 scriptEl.oneerrrroorr = ffuunnccttiioonn () {
 rreejjeecctt(nneeww EErrrroorr(`Script load error ffoorr ${fileURL}`));
 };
 document.head.append(scriptEl);
 });
}

This new version of the asynchronous loadJsFile operation is used in the following way:

loadJsFile("addTwoNumbers.js")
.tthheenn(ffuunnccttiioonn () {
 console.log(addTwoNumbers(1, 2));
})
.ccaattcchh(ffuunnccttiioonn (error) {
 console.log(error);
});

We can see that even the syntax of a simple promise-valued function call with then and catch is more clear than the
syntax of a callback-based asynchronous procedure call. This advantage is even more significant when it comes to chaining
asynchronous procedure calls, as in the following example where we first sequentially load three JS files and then invoke
their functions:

loadJsFile("addTwoNumbers.js")
.tthheenn(ffuunnccttiioonn () {
rreettuurrnn loadJsFile("multiplyBy3.js");})

.tthheenn(ffuunnccttiioonn () {
rreettuurrnn loadJsFile("decrementBy2.js");})

.tthheenn(ffuunnccttiioonn () {
 console.log(decrementBy2(multiplyBy3(addTwoNumbers(1,2))));})
.ccaattcchh(ffuunnccttiioonn (error) {
 console.log(error);
});

Notice that for executing a sequence of asynchronous operations with then, we need to make sure that each then-function
returns a promise.

As an alternative to the sequential execution of asynchronous operations, we may also execute them in parallel with
Promise.all:

PPrroommiissee..aallll([loadJsFile("addTwoNumbers.js"),
 loadJsFile("multiplyBy3.js"),
 loadJsFile("decrementBy2.js")

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

33 de 108 23/5/22 18:48

])
.tthheenn(ffuunnccttiioonn () {
 console.log(decrementBy2(multiplyBy3(addTwoNumbers(1,2))));
})
.ccaattcchh(ffuunnccttiioonn (error) {console.log(error);});

Unlike loadJsFile, which simply completes with a side effect (the loading of JS code), but without a result value being
returned, a typical asynchronous operation returns a promise object that provides either a result value, when the promise is
fulfilled, or an error value, when the promise is rejected.

Let's consider another example, where we have asynchronous operations with result values. The JS built-in fetch operation
allows retrieving the contents of a remote resource file via sending HTTP request messages in two steps:

1. In the first step, it returns a promise that resolves with a response object as its result value containing the HTTP header
information retrieved.

2. Then, invoking the text() or the json() function on the previously retrieved response object returns a promise that
resolves to the HTTP response message's body (in the form of a string or a JSON object) when it is retrieved from the
remote server.

In such a case, when we chain two or more asynchronous operation calls with result values, each successor call can be
expressed as a transformation from the previous result to a new result using arrow functions as shown in line 2 of the
following example:

ffeettcchh("user1.json")
.then(response => response.jjssoonn())
.then(ffuunnccttiioonn (user1) {alert(user1.name);})
.ccaattcchh(ffuunnccttiioonn (error) {console.log(error);});

Notice that the text file "user1.json" is assumed to contain a JSON object describing a particular user with a name field. This
JSON object is retrieved with the arrow function expression in line 2.

Calling asynchronous operations with aawwaaiitt

When a program with a statement containing an asynchronous procedure call (with await) is executed, the program will
run up to that statement, call the procedure, and suspend execution until the asynchronous procedure execution completes,
which means that if it returns a Promise, it is settled. That suspension of execution means that control is returned to the event
loop, such that other asynchronous procedures also get a chance to run. If the Promise of the asynchronous procedure
execution is fulfilled, the execution of the program is resumed and the value of the await expression is that of the fulfilled
Promise. If it is rejected, the await expression throws the value of the rejected Promise (its error).

When we use await for invoking a Promise-valued JS function, we typically do not use Promise chaining with .then,
because await handles the waiting for us. And we can use a regular try-catch block instead of a Promise chaining
.catch clause, as shown in the following example code:

ttrryy {
aawwaaiitt loadJsFile("addTwoNumbers.js");

 console.log(addTwoNumbers(2,3));
} ccaattcchh (error) {
 console.log(error);
}

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

34 de 108 23/5/22 18:48

Notice that this is the code of an ES6 module. In a normal JS file, await can only be used within async functions.

When we call several asynchronous procedures in succession with await, the code reads in a natural way, similar to the
code for calling synchronous procedures:

ttrryy {
aawwaaiitt loadJsFile("addTwoNumbers.js");
aawwaaiitt loadJsFile("multiplyBy3.js");
aawwaaiitt loadJsFile("decrementBy2.js");

 console.log(decrementBy2(multiplyBy3(addTwoNumbers(2,3))));
} ccaattcchh (error) {
 console.log(error);
}

In an async function, we can invoke Promise-valued functions in await expressions. Since an async function returns a
Promise, it can itself be invoked with await.

aassyynncc ffuunnccttiioonn load3JsFiles() {
aawwaaiitt loadJsFile("addTwoNumbers.js");
aawwaaiitt loadJsFile("multiplyBy3.js");
aawwaaiitt loadJsFile("decrementBy2.js");

}
ttrryy {
aawwaaiitt load3JsFiles();

 console.log(decrementBy2(multiplyBy3(addTwoNumbers(2,3))));
} ccaattcchh (error) {
 console.log(error);
}

In the more typical case of asynchronous operation calls with result values, we obtain code like the following await-based
version of the above promise-based example of using fetch:

ttrryy {
ccoonnsstt response = aawwaaiitt fetch("user1.json");
ccoonnsstt user1 = aawwaaiitt response.json();

 alert(user1.name);
} ccaattcchh (error) {
 console.log(error);
}

For more about asynchronous programming techniques, see Promises, async/await and Demystifying Async Programming
in Javascript.

2.3. Using ES6 Modules

Normal modules are library code files that explicitly export those (variable, function and class) names that other modules
can use (as implicitly frozen like const declarations). A module that is to use items from another module needs to explicitly
import them from that other module using import statements. It is recommended that all JS module files use the file
extension "mjs" for indicating that they are different from classical script files.

Web pages can load module files, possibly along with classical script files, with the help of a special type of script

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

35 de 108 23/5/22 18:48

https://javascript.info/async
https://javascript.info/async
https://yunchi.dev/posts/demystifying-async/
https://yunchi.dev/posts/demystifying-async/
https://yunchi.dev/posts/demystifying-async/
https://yunchi.dev/posts/demystifying-async/

element.

The meaning of ES6 modules is based on the following principles:

1. A JS library file can be turned into a module by using "export" for all library items. Other modules can "import" its items.

2. Any ordinary script file that is to use one or more items from a module has itself to be turned into a module ("only
modules can use modules"). Since it doesn't export anything, such a module could also be called an "import module".

3. All modules, no matter if they export anything or are just "import modules", are separated from the global scope in the
following sense: they have read access to items from the global scope such as DOM objects (like document) or other
global objects (like Array), but they cannot create any names (including objects and functions) in the global scope. This
implies, for instance, that a JS function defined in a module cannot be assigned to an onclick event handler attribute in
an HTML file..

Using modules implies that we can no longer use the global scope for the names of functions/classes, which is a restriction
that is considered a good practice in software engineering.

An example of a normal (library) module file is util.mjs with the following code:

ffuunnccttiioonn iissNNoonnEEmmppttyySSttrriinngg(x) {
rreettuurrnn ttyyppeeooff(x) === "string" && x.trim() !== "";

}
...
eexxppoorrtt { isNonEmptyString, ... };

An example of a module that imports certain items from other modules and then uses them in its own code, and also exports
some of its own items is the model class file Book.mjs with the following import/export statements:

iimmppoorrtt { isNonEmptyString, ... } from "../../lib/util.mjs";
iimmppoorrtt { NoConstraintViolation, MandatoryValueConstraintViolation, ... }
 from "../../lib/errorTypes.mjs";
eexxppoorrtt ddeeffaauulltt ffuunnccttiioonn BBooookk(slots) {...}

Since this module only exports one class (Book), a default export us used, allowing simplified imports.

An example of a module that does not export anything, but only imports certain items, is the view code file
createBook.mjs with the following import statements:

iimmppoorrtt Book from "../../src/m/Book.mjs";
iimmppoorrtt { fillSelectWithOptions } from "../../lib/util.mjs";
...

An HTML page (here: createBook.html) can load such a module with a special type of script element:

<script src="src/v/createBook.mjs" ttyyppee==""mmoodduullee""></script>

Notice that this script element's type attribute is set to "module".

Alternatively, the code of such a module can be embedded in the HTML page like so:

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

36 de 108 23/5/22 18:48

<script ttyyppee==""mmoodduullee"">
iimmppoorrtt Book from "./src/m/BBooookk..mmjjss";
ccoonnsstt clearButton = document.getElementById("clearData");
// Set event handler for the button "clearData"
 clearButton.addEventListener("click", ffuunnccttiioonn () {BBooookk.clearData();});
</script>.

2.4. Quiz Questions

2.4.1 Question 1: Data values and objects

Which of the following statements about data values and objects in JS are true? Select one or more:

☐ true is an object.

☐ A JS array is a JS object.

☐ false is a data value.

☐ A JS function is a JS object.

☐ 1 is a data value.

☐ Infinity is an object.

2.4.2 Question 2: Evaluating a Boolean expression

What is the value of the Boolean expression null || !0 ? Select one:

☐ true

☐ false

2.4.3 Question 3: JavaScript datatypes

Which of the following denote primitive datatypes in JavaScript? Select one or more:

1. double

2. string

3. float

4. int

5. boolean

6. byte

7. number

2.4.4 Question 4: Constructor-based class definition

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

37 de 108 23/5/22 18:48

Which of the following JavaScript fragments correctly defines the constructor-based class City shown in the class diagram
(either using a constructor function definition or an ES6 class definition)? Hint: notice that setName is an instance-level
method while checkName is a class-level ("static") method. Select one or more:

☐ function City(n) {
 this.name = n;
 this.setName = function (n) {this.name = n;};
 checkName = function (n) {...}; // returns true or false
}

☐ class City {
 constructor (n) {
 this.setName(n);
 }
 setName(n) {if (City.checkName(n)) this.name = n;}
 static checkName(n) {...} // returns true or false
}

☐ function City(n) {
 this.setName(n);
 function checkName(n) {...} // returns true or false
}
City.prototype.setName = function (n) {this.name = n;};

☐ function City(n) {
 this.setName(n);
}
City.prototype.setName = function (n) {
 if (City.checkName(n)) this.name = n;
};
City.checkName = function (n) {...}; // returns true or false

2.4.5 Question 5: Type coercion

Consider the following JavaScript code:

var a = 5;
var b = "7";
var c = a + b;

What is the value of the variable c? Select one:

☐ The string "57"

☐ The number 12

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

38 de 108 23/5/22 18:48

☐ undefined

☐ The code will result in an error since you can't use the + operator between two operands of different types.

2.4.6 Question 6: Variable scope

What is the output of the following program?

function foo() {
 var i=7;
 for (var i=0; i < 10; i++) {
 ... // do something
 }
 console.log(i);
};
foo();

Answer: _____

Chapter 3. Building Web Apps with Firebase

3.1. Introducing Firebase

Firebase is a platform for creating cloud-based web applications without dealing with the complexity of managing server
hardware and server software. From the developer's standpoint, the absence of such complexity means better focusing on
web development.

Launched in 2011 by Firebase Inc. and acquired by Google in 2014, Firebase became a popular cloud computing solution
among start-ups and businesses that opted for Backend-as-a-service (BaaS) solutions. Rather than building an ad-hoc server
infrastructure, in a BaaS solution, APIs and SDKs connect the frontend of the apps to cloud-based backend services.

Firebase and other BaaS providers offer clear benefits for web development:

!"Speed: automating most of the backend tasks, so a backend environment can be set up in hours. This time-saving
matches with modern agile development philosophy and methods used nowadays by development teams.

!"Cost: through a lower learning curve, developers quickly become more efficient, adding that businesses do not need to
invest high amounts of money in servers, allowing them to scale their apps as they grow.

Although started as a real-time database, Firebase has evolved as a whole set of services, tools and APIs for mobile
(Android and iOS) and web-based applications, aiming to address the entire development life-cycle: build, test, and
manage.

This tutorial uses the most essential services for building web applications with plain JavaScript, such as Firebase
Authentication, Firestore, Firebase Hosting, and Firebase Functions.

3.1.1 Firestore: a Cloud Database Management System

Firebase provides two database management systems (DBMS): Realtime Database and Firestore. Both offer a NoSQL
DBMS as a Service for mobile and web apps. Unlike the older Realtime Database technology, which essentially manages a
large JSON tree, Firestore aims at facilitating scalability, mainly through:

!"complex data models, based on

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

39 de 108 23/5/22 18:48

1. Firestore documents correspond to unique JS objects, representing entity records with possibly complex-valued fields;

2. Firestore collections of documents correspond to object stores or entity tables;

!"better querying options, allow chain and/or combine filters and sorting in a single query.

Firestore SDKs are for server-side programming code in Java, Python, Node.js, Ruby, PHP, Golang, .NET, and C# for both
DBMSs.

3.1.2 Firebase Hosting

Firebase Hosting is a static web hosting solution for websites and applications built with HTML, CSS, and JavaScript:
single-page applications and progressive web apps. Firebase Hosting includes a free Content Delivery Network (CDN), and
free SSL/HTTPS, part of Google Cloud Platform. Paired with Cloud Functions and Firestore, we can build microservices
and APIs. Firebase Hosting behaviour is highly configurable, allowing URL redirections, URL rewriting, direct HTTP
requests to functions or Cloud Run containers (virtualized applications), customization of dynamic links, header
configuration, and more.

3.1.3 Firebase Authentication

Firebase Authentication is a user-authentication solution for mobile and web apps. It allows us to use pre-built user
interfaces (FirebaseUI) or create custom user interfaces for login management and authentication. It handles the most
common authentication methods, such as using custom credentials, emails, or federated social media accounts, such as
Google, Apple, Facebook, Microsoft, Yahoo, Twitter, GitHub, and more.

3.1.4 Pricing and Billing Concerns

Firebase provides a free plan with limited resources (see the free quota of the Spark Plan). However, these resource limits
are sufficient for our tutorials and for creating real-world applications. The paid ('Blaze') plan offers a "Pay as you go"
billing model under which we pay what we get, not more and not less. Nevertheless, the Spark Plan includes all Firebase
cloud services, such as Authentication, Firestore, Cloud Functions, Hosting, Firebase Machine Learning, Real-Time
Database, Storage, and many other features that enable web developers to create web apps, websites, games, mobile apps,
etc.

In a real-world development project with Firebase, we should make design decisions only after understanding how billing
works; otherwise, we may turn a technically successful project into a financially unsustainable business. In this tutorial, this
issue is taken very seriously. We will never get an undesirable outcome in the monthly bill if we use it with the small sample
of records presented in this app. Therefore, some portions of code aim to exemplify concepts presented in this educational
scenario but never be used in an actual situation.

For instance, consider this snippet to retrieve all documents in a collection:

ccoonnsstt booksQrySns = await getDocs(collection(db, "books"));

If the collection "books" contains just a few records, we will never get close to the limits of the free plan. Still, if the same
statement is repeated several times, querying a database with many thousands of records, we should expect a hefty bill from
Google at the end of the month.

One way to control the number of Firestore read operations is by setting up limits in our queries. When used with
pagination, this will provide complete control of our Firestore resource consumption. Additionally, setting daily or monthly
spending limits is always a good practice.

Read more about Firebase billing plans and how Firestore is billed.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

40 de 108 23/5/22 18:48

https://firebase.google.com/docs/firestore/quotas#free-quota
https://firebase.google.com/docs/firestore/quotas#free-quota
https://firebase.google.com/docs/firestore/query-data/order-limit-data
https://firebase.google.com/docs/firestore/query-data/order-limit-data
https://firebase.google.com/docs/firestore/query-data/order-limit-data
https://firebase.google.com/docs/firestore/query-data/order-limit-data
https://firebase.google.com/docs/firestore/quotas#manage_spending
https://firebase.google.com/docs/firestore/quotas#manage_spending
https://firebase.google.com/docs/firestore/quotas#manage_spending
https://firebase.google.com/docs/firestore/quotas#manage_spending
https://firebase.google.com/pricing?hl=he
https://firebase.google.com/pricing?hl=he
https://firebase.google.com/docs/firestore/pricing
https://firebase.google.com/docs/firestore/pricing

3.2. Firebase JS SDK version 9, the "Modular Version"

This tutorial uses Firebase JavaScript/Web SDK version 9, better known as the "modular version", rather than version 8,
known as the "namespaced version". Currently, Firebase supports both versions, but version 8 will be deprecated soon, and
the Firebase encourages new apps' creators to adopt version 9.

This new version released in 2021 takes advantage of:

!"The use of ES6 Modules, facilitates "tree-shaking" or removing unused code to create smaller and faster web
applications. Let's consider that JS began as a language for making small websites and that today it is widely used to
create large scale and complex applications. The advent of modules allows developers to separate functionality, simplify
dependency management, reuse code and manage the extensibility of code.

!"No side-effect imports, where we explicitly import the functions used in our app's code. An imported file represents a
side-effect import when it includes JS functions that change something different from its own parameters and return
value (such as global variables or variables of its outer scope). When we use side-effect imports, we cannot ensure what
exactly is being imported, such as in:

iimmppoorrtt "firebase/app";

on the other hand, no side-effect imports mean that we import individually each function used within a JS module, for
instance:

iimmppoorrtt { iinniittiiaalliizzeeAApppp } from "firebase/app";

!"Smaller libraries, an enormous reduction in size that improves web performance, particularly in the packages of
Firebase Authentication (72% smaller) and Firestore (40% smaller), and up to 84% smaller if we opt for the Firestore
Lite JavaScript/Web SDK, a constrained but ultra-light subpackage. In this tutorial series, we will use both the standard
and lite versions.

As we can see, the design of Firebase JS/Web SDK version 9 aims to optimize the performance of web apps and increase
understandability in our code. When we code using this version, our code will be organized around the functions imported
from the SDK libraries. Let's see an example of the use of the "modular" version of the Firebase SDKs for adding Firebase
and Firestore to a project:

1. Import the initializeApp() function using the ES6 modules specifiers of the core Firebase SDK library and the
getFirestore() function from the Firestore Web SDK, installed locally using nmp.

iimmppoorrtt { iinniittiiaalliizzeeAApppp } from "firebase/app";
iimmppoorrtt { ggeettFFiirreessttoorree } from "firebase/firestore";

2. Initialize a Firebase App object using the initializeApp() function and firebaseConfig, an object created with
the project configuration.

ccoonnsstt firebaseConfig = {
// TODO: Replace the following with your web app's Firebase project configuration

};
// Initialize a Firebase App object
iinniittiiaalliizzeeAApppp(firebaseConfig);

3. Initialize Firestore using the getFirestore() function. From now on, the object "db" represents the interface to access

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

41 de 108 23/5/22 18:48

https://firebase.google.com/docs/web/learn-more#config-object
https://firebase.google.com/docs/web/learn-more#config-object

our Firestore DB instance on the cloud.

// Initialize Firestore interface
ccoonnsstt ddbb = ggeettFFiirreessttoorree(());

Notice that the "modular" version of the Firebase JS SDK has been optimized for using module bundlers, such as Webpack
or Rollup, therefore it is expected you invoke the Firestore Web SDK from your local version installed using nmp.
Nevertheless, when we don't want to use module bundlers –as in this tutorial– we must import the SDKs from the CDN,
like:

iimmppoorrtt { initializeApp } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-app.js";
iimmppoorrtt { getFirestore, doc, collection, query, setDoc, getDoc } from "https://www.gstatic.com/firebasejs/9.

3.3. Firestore Database Model

Firestore, or Firestore, is a NoSQL database, and unlike a traditional SQL database (DB), there is no DB schema defining a
relational structure for all DB tables and their records. Instead, like in object-relational DBs, a Firestore DB table can have
composite attributes such that its records contain composite values.

3.3.1 Database Tables and Records

In the Firestore jargon, a DB table is called a "collection" (of records), and a DB record is called a "document". The table's
name is called "collection ID", and each record has a "Document ID", which is typically the primary key value of the
record (if the table has a non-composite primary key).

Since, unlike relational and object-relational DBs, a Firestore DB is schema-free, one may add any type of Firestore
document to a Firestore collection. However, this liberty is hardly used in practice. So, in most cases, a Firestore collection
is used as a DB table with a specific (implicit) schema.

Firestore collections are created on the fly, simply by adding a Firestore document to a not yet existing collection, like so:

iimmppoorrtt { doc, setDoc } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"
ccoonnsstt record = {isbn: "006251587X", title: "Weaving the Web", year: 2000};
await sseettDDoocc(ddoocc(db, "books", "006251587X"), record);

In this example, the expression doc(db, "books", "006251587X") creates a document reference to a Firestore
document with ID "006251587X" in the collection books. If the books collection does not yet exist, it will be created on the
fly.

3.3.2 Data Types

The following data types are supported by Firestore:

Table 3-1. Firestore Data types

Data Type Example Note

Text string

"Lorem ipsum dolor sit amet,
consetetur sadipscing elitr, sed diam
nonumy eirmod tempor invidunt ut

Text of up to 1,048,487 bytes, encoded to UTF-8 if
we want to be considered by queries.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

42 de 108 23/5/22 18:48

https://webpack.js.org/
https://webpack.js.org/
https://rollupjs.org/guide/en/
https://rollupjs.org/guide/en/

Data Type Example Note

labore et dolore magna aliquyam erat,
sed diam voluptua. At vero eos et
accusam et justo duo dolores et ea
rebum."

Integer
(number) 12345 64-bit signed.

Floating-
point
(number)

3.1415926535
64-bit double precision, IEEE 754 (double-precision
floating-point).

Boolean true / false

Date and
time
(timestamp)

31 May 1999 at 16:46:00 UTC+2

Firestore returns a timestamp object expressed in
seconds and nanoseconds, like
Timestamp(seconds=1560523991,
nanoseconds=286000000).

Map (or
Record) {id: 17, foo: "bar"}

A Firestore map is a JS record/object, which is a set
of name/value pairs.

Array [1, "one", {id: 17, foo: "bar"}]
An array can contain a record, but not another
array.

Bytes Any binary data like images or text files.
Binary data of up to 1,048,487 bytes, not UTF-8
encoded characters. Consider Firebase Storage for a
cloud storage service for large multimedia files.

A Firestore collection is similar to a JSON array, while a Firestore document is similar to a JSON object. For instance, the
following JSON object represents a Firestore document:

{
"isbn": "006251587X",
"title": "NoSQL Databases",
"languages": ["en","de","es"],
"author": {"name":"Peter Hanks",

"birthDate":"1993-06-17"},
"reviews": [{title:"Easy and fun to read!", nmrOfStars: 5},

 {title:"Disappointing", nmrOfStars: 1}]
}

Notice that the value of the languages attribute is an array (list), the value of the author attribute is a map (representing a
record), and the value of the reviews attribute is a record set called subcollection in the Firebase jargon.

There are two special Firestore data types: document references, like books/006251587X, and geographical points like
[51.5074, 0.1278] representing latitude and longitude values. Both data types are not yet well-supported currently.

Record fields having a set of records as their value

However, while JSON arrays/records can be arbitrarily nested, the use of nested structures within a Firestore document is
limited. A Firestore subcollection is a collection within a document. Following our example, we add chapters to a book
record:

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

43 de 108 23/5/22 18:48

https://stackoverflow.com/questions/6003492/how-big-can-a-64bit-signed-integer-be
https://stackoverflow.com/questions/6003492/how-big-can-a-64bit-signed-integer-be
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://firebase.google.com/docs/storage
https://firebase.google.com/docs/storage

ccoonnsstt chapterDocRef = db.collection("books").document("006251587X")
 .collection("chapters").document(1);
chapterDocRef.set({ data })

3.4. Important Types of Firestore Objects

This guide aims to clarify the essential types of Firestore objects and how they relate to each other.

3.4.1 References

References are objects that represent the location of a record/document or table/collection in a Firestore database.

!"A document reference object (DocumentReference), represents the location of a record/document, and is created using
the doc() method.

iimmppoorrtt { ddoocc } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js";

ccoonnsstt bookDocRef = ddoocc(db, "books", "006251587X");

We can also create document references specifying the path to the record/document as a string for convenience.

ccoonnsstt bookDocRef = ddoocc(db, "books/006251587X");

!"A collection reference object (CollectionReference) represents the location of a table and is created using the
collection() method.

iimmppoorrtt { ccoolllleeccttiioonn } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

ccoonnsstt booksCollRef = ccoolllleeccttiioonn(db, "books");

Whether a Firestore record/document or table/collection already exists in a database or not, they can be "referenced" and be
used anytime later to retrieve, save or listen to the location in a Firestore database. Notice that creating a reference does not
execute any network operation and consequently does not impact your billing due the database has not been queried up to
that point.

Although similar, document references and collection references are two different types of references; hence they have their
own properties and methods.

3.4.2 Queries

query objects (Query) are also objects that represent a database query that we can anytime later retrieve or listen to. As
well as references, queries do not execute any network operation. We create query objects using the methods query() and
where() is:

iimmppoorrtt { qquueerryy, wwhheerree } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

ccoonnsstt q = qquueerryy(collection(db, "books"), wwhheerree("edition", "==", "1"));

3.4.3 Snapshots

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

44 de 108 23/5/22 18:48

https://firebase.google.com/docs/reference/js/firestore_.documentreference
https://firebase.google.com/docs/reference/js/firestore_.documentreference
https://firebase.google.com/docs/reference/js/firestore_.collectionreference
https://firebase.google.com/docs/reference/js/firestore_.collectionreference
https://firebase.google.com/docs/reference/js/firestore_.query
https://firebase.google.com/docs/reference/js/firestore_.query

Snapshots are objects that contain data from either a reference object or a query object. We may see a snapshot as a picture
of the data we receive when retrieving it from the database. The term snapshot reminds us that the retrieved values of the
queried properties are from when the query has been processed, but these properties' values may have been changed soon
after.

Additionally to the record data inside, a snapshot provides several properties and methods that are convenient for knowing
how the data or the record change. A snapshot is always invoked asynchronously using async/await, and always returns a
promise.

!"Document snapshot, in the following example, the getDoc() method is used to retrieve a document snapshot
(DocumentSnapshot) containing data from a single record/document located in a Firestore database.

iimmppoorrtt { doc, ggeettDDoocc } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

ccoonnsstt bookDocRef = doc(db, "books", "006251587X"); // document reference
ccoonnsstt bookDocSn = await ggeettDDoocc(bookDocRef); // document snapshot

An attempt to retrieve an inexistent document snapshot will return undefined.

!"Query snapshot, the getDocs() method is used to retrieve a query snapshot (QuerySnapshot) representing the result of
a query, and it may contain none, one or many snapshot objects (QueryDocumentSnapshot) that may constitute either
an entire table/collection in a Firestore database,

iimmppoorrtt { collection, ggeettDDooccss } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

ccoonnsstt booksCollRef = collection(db, "books"); // collection reference
ccoonnsstt booksQrySn = await ggeettDDooccss(booksCollRef); // query snapshot

or none, one or many snapshot objects (QueryDocumentSnapshot) resulting from a query.

iimmppoorrtt { collection, qquueerryy,, ggeettDDooccss, wwhheerree } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-fire

ccoonnsstt q = qquueerryy(collection(db, "books"), wwhheerree("edition", "==", "1")); // query
ccoonnsstt booksQrySn = await ggeettDDooccss(q); // query snapshot

When a query snapshot contains none query snapshot document objects returns an empty array, and when it has only one
query snapshot document object returns an array with one element.

!"Query document snapshot, each snapshot object inside a QuerySnapshot is a query document snapshot
(QueryDocumentSnapshot) containing data retrieved from a table/document in a Firestore database, returned within an
array whether it contains one or many. To access each query document snapshot, we must iterate the query snapshot
object using the docs property.

ffoorr (ccoonnsstt bookDocSn of booksQrySn.ddooccss) {
 console.log(bbooookkDDooccSSnn.id) // query document snapshot
}

Since query document snapshots come from a query snapshot, they are always guaranteed to exist.

Document snapshot and query document snapshot objects share the same properties and methods, being both the same in
practice. This tutorial treat them similarly, calling them indistinctively document snapshots for convenience.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

45 de 108 23/5/22 18:48

https://firebase.google.com/docs/reference/js/firestore_.documentsnapshot
https://firebase.google.com/docs/reference/js/firestore_.documentsnapshot
https://firebase.google.com/docs/reference/js/firestore_.querysnapshot
https://firebase.google.com/docs/reference/js/firestore_.querysnapshot
https://firebase.google.com/docs/reference/js/firestore_.querydocumentsnapshot
https://firebase.google.com/docs/reference/js/firestore_.querydocumentsnapshot

It may happen that after retrieving any of the previously mentioned snapshots, the referenced original record(s)/document(s)
may be deleted by another user however, each individual snapshot will continue existing, although it will be impossible to
retrieve data from it.

Later we will know and see the most important methods and properties of every snapshot object working in context, but here
there are a few of them very useful:

!"iidd, a property that returns the Document ID in a table/collection. Very useful when we need to know the foreign key
without accessing the record data.

!"ddaattaa(()), a method that extracts the data enclosed in any of the snapshot objects described lines above. It returns
undefined if the data does not exist.

!"ggeett((ffiieelldd)), a method that extracts the data from a specific field inside a snapshot object.

!"eexxiissttss(()), a method that verifies, through a document snapshot, a record, existence in a Firestore database.

!"eemmppttyy(()), a method that verifies if a result from a query snapshot is empty, containing no result.

3.4.4 Accessing record data

Finally, the chosen ways to access record data in this tutorial. We present a straightforward way to access every data object
and also a simplified form:

!"From a single record/document, or document snapshot, using the method data().

iimmppoorrtt { doc, getDoc } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

ccoonnsstt bookDocRef = doc(db, "books", "006251587X"); // document reference
ccoonnsstt bookDocSn = await getDoc(bookDocRef); // document snapshot
ccoonnsstt bookRec = bookDocSn.ddaattaa(()); // record data

Here is a simplified way to achieve the same.

iimmppoorrtt { doc, getDoc } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

ccoonnsstt bookRec = (await getDoc(doc(db, "books", "006251587X"))).data();

!"From a query containing multiple records/documents, or a query snapshot, using the Firestore property docs, the JS
method map() and the Firestore method data(). In specific circumstances, in this tutorial, we access multiple
records/documents data using a for/of loop.

iimmppoorrtt { collection, getDocs } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

ccoonnsstt booksCollRef = collection(db, "books"); // collection reference
ccoonnsstt booksQrySn = await getDocs(booksCollRef); // query snapshot
ccoonnsstt bookDocSns = booksQrySn.ddooccss; // multiple document snapshots in an array
ccoonnsstt bookRecs = bookDocSns.mmaapp(d => d.ddaattaa(())); // records in an array

Here is a simplified way to achieve the same.

iimmppoorrtt { collection, getDocs } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

46 de 108 23/5/22 18:48

ccoonnsstt bookRecs = (await getDocs(collection(db, "books")))docs.map(d => d.data());

3.4.5 Naming convention of Firestore objects

This tutorial proposes the following convention for naming types of Firestore objects to keep consistency and readability in
the code provided. The examples are based on a "books" table/collection.

Table 3-2. Names of the most important Firestore objects

Firestore object Reference Snapshot Record data

Document snapshot (single) bookDocRef bookDocSn bookRec

Collection / query snapshot (multiple) booksCollRef booksQrySn bookRecs

Query / query snapshot (multiple) q booksQrySn bookRecs

Query document snapshot (single) bookDocSn / bookDocSns bookRec

3.5. Writing Data to Firestore

Firestore has three operations for writing data to a database.

3.5.1 Create a record with the sseettDDoocc(()) method

There are two different ways to use the setDoc() method,

!"one with automatically generated Document ID,

import { doc, sseettDDoocc } ffrroomm "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

ccoonnsstt bookDocRef = doc(db, "books");
await sseettDDoocc(bookDocRef, data);

!"and another with a specified Document ID.

ccoonnsstt bookDocRef = doc(db, "books", "006251587X");
await sseettDDoocc(bookDocRef, data);

In both cases, if the record/document does not exist, a new record/document will be created. If, on the other hand, the
record/document already exists, the setDoc() method with the merge option "true" will merge the provided property-
value data with the existing record/document, as an update operation.

ccoonnsstt bookDocRef = doc(db, "books", "006251587X");
await sseettDDoocc(bookDocRef, { edition: "2" }, { merge: true });

Finally, If the record/document exists, the setDoc() method without the merge option will overwrite all data.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

47 de 108 23/5/22 18:48

3.5.2 Create record with the aaddddDDoocc(()) method

The addDoc() method creates a new record/document with an automatically generated Document ID, without chance of
specifying it.

iimmppoorrtt { collection, aaddddDDoocc } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

ccoonnsstt booksCollRef = collection(db, "books");
await aaddddDDoocc(booksCollRef, {
 isbn: "006251587X",
 title: "Weaving the Web",
 year: 2000
});

3.5.3 Update record with the uuppddaatteeDDoocc(()) method

The simple way of the updateDoc() method allows to update some fields of an existing record/document,

iimmppoorrtt { doc, uuppddaatteeDDoocc } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

ccoonnsstt bookDocRef = doc(db, "books", "006251587X");
await uuppddaatteeDDoocc(bookDocRef, { year:2000 }); // update a specific attribute

while it can also be used to update record-valued attributes and (array-) list-valued attributes.

// update a record-valued attribute
await uuppddaatteeDDoocc(bookDocRef, {
"author.name": "Peter Hanks"

});
// add a new language to the list-valued field "languages"
await uuppddaatteeDDoocc(bookDocRef, {
 languages: aarrrraayyUUnniioonn("fr")
});
// remove a language from the "languages" array field
await uuppddaatteeDDoocc(bookDocRef, {
 languages: aarrrraayyRReemmoovvee("fr")
});

3.6. Reading Data from Firestore

Firestore has three operations for reading data from a database.

3.6.1 Read a record with the ggeettDDoocc(()) method

We show the detailed way to get data from a single record/document,

iimmppoorrtt { doc, collection, ggeettDDoocc } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

ccoonnsstt booksCollRef = collection(db, "books");
ccoonnsstt bookDocRef = doc(booksCollRef, "006251587X");
ccoonnsstt bookDocSn = await ggeettDDoocc(bookDocRef);

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

48 de 108 23/5/22 18:48

ccoonnsstt bookRec = bookDocSn.data();

and a simplified way to achieve the same.

ccoonnsstt bookDocSn = await ggeettDDoocc(db, "books", "006251587X");
ccoonnsstt bookRec = bookDocSn.data();

3.6.2 Read all records in a table with the ggeettDDooccss(()) method

Notice how the getDocs() method relies on the property docs to extract all document snapshots in the query snapshot
object.

iimmppoorrtt { doc, collection, ggeettDDoocc } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore.js"

ccoonnsstt booksCollRef = collection(db, "books");
ccoonnsstt booksQrySn = await ggeettDDooccss(booksCollRef);
ccoonnsstt bookDocSns = booksQrySn.ddooccss;
ccoonnsstt bookRecs = bookDocSns.map(d => d.data());

Now a simplified way to achieve the same.

ccoonnsstt booksQrySn = await ggeettDDooccss(collection(db, "books"));
ccoonnsstt bookRecs = bookDocSns.ddooccss.map(d => d.data());

3.6.3 Query a table with the qquueerryy(()), wwhheerree(()) and ggeettDDooccss(()) methods

Retrieve specific records/documents based on attribute filters.

iimmppoorrtt { collection, qquueerryy, wwhheerree, ggeettDDoocc } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firesto

ccoonnsstt booksCollRef = collection(db, "books");
ccoonnsstt q = qquueerryy(booksCollRef, wwhheerree("title", "==", "Weaving the Web"));
ccoonnsstt booksQrySn = await ggeettDDooccss(q); // query snapshot

Find more advanced ways to query the database with simple and compound queries.

Standard query operators: <, <=, ==, >, >=, !=.

Special query operators:

!"array-contains

!"array-contains-any

!"in

!"not-in

3.6.4 Data management principles in this tutorial

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

49 de 108 23/5/22 18:48

https://firebase.google.com/docs/firestore/query-data/queries
https://firebase.google.com/docs/firestore/query-data/queries

In the data management approach that we adopt in this tutorial, we are going to use the following principles:

1. We always use entity IDs as Document IDs, and no Firebase auto-IDs.

2. Records/documents are preferably retrieved by their Document IDs (= entity ID) with the getDoc() method.

3. For creating a new entity record as a Firestore record/document (with its entity ID as Document ID), we use the Firestore
setDoc() method.

4. For updating an existing Firestore record/document (representing an entity record), we use the Firestore updateDoc()
method.

3.7. Quiz Questions

3.7.1 Question 1: Conversion with map

What is the purpose of the arrow function as the argument of the map function in the following expression? (await
db.collection("books").get()).docs.map(d => d.data())

For converting a ______________ to a ______________.

☐ Collection object.

☐ Document Object

☐ QuerySnapshot object

☐ Record

☐ DocumentSnapshot object

3.7.2 Question 2: Characteristics of Firestore

Which of the following statements apply to Firestore? Select one or more:

☐ A Firestore collection has a certain schema (i.e., a list of attributes), implying that only documents that comply with its
schema (having values for the given attributes) can be stored in a particular collection.

☐ A Firestore database table (representing a set of records) is called a collection.

☐ A Firestore collection does not have a schema, implying that any document can be stored in a particular collection. For
instance, the document {name:"X", age:13} can be stored in the collection "books".

☐ A Firestore database record is called a collection.

☐ A Firestore database record is called a document.

☐ Firestore supports certain forms of non-elementary attributes with composite data values (lists, records, record lists).

☐ A Firestore database table (representing a set of records) is called a document.

3.7.3 Question 3: Document snapshots

What kind of JS object is returned by invoking the Firestore function db.collection(x).doc(y).get()? Select one:

☐ A QuerySnapshot object.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

50 de 108 23/5/22 18:48

☐ A Query object.

☐ A Document object.

☐ A DocumentSnapshot object.

3.7.4 Question 4: Firebase JS SDK version 9

What is true about the following import expression? Select one or more:

import { initializeApp } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-app.js";

☐ It is a side-effect import.

☐ It is a no side-effect import.

☐ Its specifier invokes a function from a CDN origin.

☐ Its specifier invokes a function from the locally installed SDK using npm.

☐ it is optimized for its use with module bundlers.

3.7.5 Question 5: Use of the setDoc() method

What happens when we invoke these two expressions when the detailed record ("006251587X") already exists? Select one:

ccoonnsstt bookDocRef = doc(db, "books", "006251587X");
await setDoc(bookDocRef, data);

☐ A new record is created with an automatically generated Document ID.

☐ The provided property-value data is merged with the existing record/document.

☐ The provided property-value data is overwritten with the existing record/document.

Chapter 4. Building a Minimal Web App with Plain JS and Firebase in Seven Steps

This tutorial shows how to build a minimal web application with plain JavaScript and Firestore, Cloud Google's DBMS
service. The purpose of our example app is to manage information about books. That is, we deal with a single object type:
Book, as depicted in the class diagram of Figure 4-1. The object type Book.

Figure 4-1. The object type Book

isbn : String {id}
title : String
year : Integer

Book

The Table 4-1. A collection of book objects represented as a table shows a sample data population for the model class
Book:

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

51 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__fig-class-book
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable
https://js-firebase-tutorials.netlify.app/minimal/index.html#ch4__BooksObjectinTable

Table 4-1. A collection of book objects
represented as a table

ISBN Title Year

006251587X Weaving the Web 2000

0465026567 Gödel, Escher, Bach 1999

0465030793 I Am A Strange Loop 2008

What do we need for a data management app? There are four standard use cases, which have to be supported by the app:

1. Create a new book record by allowing the user to enter the data of a book that is to be added to the collection of stored
book records.

2. Retrieve (or read) all books from the data store and show them in the form of a list.

3. Update the data of a book record.

4. Delete a book record.

These four standard data management use cases, and the corresponding operations, are often summarized with the acronym
CRUD.

For entering data with the help of the keyboard and the screen of our computer, we use HTML forms, which provide the user
interface technology for web applications.

For maintaining a collection of persistent data objects, we need a storage technology that allows us to keep data objects in
persistent records on a secondary storage device, such as a hard-disk or a solid-state disk. For our minimal example app, we
will use Google's NoSQL database Cloud Firestore.

4.1. Step 1: Set up the Firebase Project

Before we can create our first plain JavaScript and Firebase web app we need to set up a Firebase environment, divided in 1)
a local environment on our computer, and 2) a production environment on "the cloud" (on Google Cloud Platform), that we
set up via Firebase Console. And as we will see later, what we do in the local environment is deployed in our production
environment. Something unnoticeable at first sight is that Firebase Console is just a proxy for Google Cloud Platform, so
everything we do on Firebase Console is mirrored on our GCP account.

We need the following installed on our computer:

1. A Google account.

2. Node.js, is an open-source JavaScript runtime environment that allows you to execute programs written in the JavaScript
programming language on your browser and on a server environment as a standalone application. Node.js has been
written in Chrome’s V8 JavaScript engine, the same runtime running on your browser. For installing Node.js use any of
the Node.js installers according to your operative system. For installing Node.js via package manager look at this
Node.js's official page with the list of all options according to your OS. If you are a Windows user and avoid GUI
installers, we advice you to try Scoop for a Unix-alike experience.

3. NPM or NodeJS Package Manager, a free package manager for Node.js, consists of 1) a command-line client (CLI) and
2) the package registry, the world's largest database of public and paid-for private packages. NPM is the default package
manager for Node.js, and comes together with it; this means that you don't have to install NPM after installing Noje.js on

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

52 de 108 23/5/22 18:48

https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://nodejs.org/en/
https://nodejs.org/en/
https://developers.google.com/v8/
https://developers.google.com/v8/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/#windows-1
https://nodejs.org/en/download/package-manager/#windows-1
https://www.npmjs.com/
https://www.npmjs.com/

your computer.

You may be wondering why do we need to setup a Node.js environment if we are going to build a plain JS web app fully
running on the browser; however, notice that for using Firebase services via their Firebase SDKs, we intensively use Node.js
in the background. Along with this tutorial, we will progressively cover what you need to know about Node.js projects to
achieve more advanced things on Firebase.

Consider also that we use WebStorm as our IDE of choice in this tutorial, so we recommend its use. However, any other
code editor can be used for completing this tutorial. If you are a student, you can get a free educational license for
WebStorm.

Without much ado, let's start to set up our Firebase project:

4.1.1 Setup the production environment

We create our Firebase project:

1. Being logged into your Google Account, go to the Firebase website and click on "Go to console".

2. Click on "Create a project" or "add project" on your Firebase Console home page.

3. Name the project and click on "Continue".

4. Disable Google Analytics. This "free" user access measurement service, which is overkill for most website owners and
comes at the cost of bloating all your pages with Google's tracking code, reducing page load time (bad for SEO),
displaying annoying cookie banners (for GDPR-compliance) and tracking your users. Notice that browsers' privacy
protection features are increasingly blocking Google Analytics.

If you need a web analytics service, consider using Plausible Analytics, which is Open Source and works without third-
party cookies.

Then click on "Create Project".

5. After a bit of wait, you will see the Firebase Console home page, which includes the main menu, access to the project
information, the name of your app and a few quick links for getting started. All your Firebase project's services, such as
Cloud Firestore, Hosting, Storage, Cloud Functions, Machine Learning and Authentication can be managed by Firebase
Console.

4.1.2 Create a Firestore database instance

We now create the Firestore database instance for your Firebase project.

6. Click on "Build" in the main menu and then on "Firestore Database".

7. Click on "Create database".

8. Security rules are a vital component for setting up security mechanisms for our database. In the Firebase documentation,
you can read more about Firebase Security Rules. For the moment, choose "Start in test mode", and you will have 30
days for defining suitable rules for your app's database, which we will do later in Part 2. Now choose the corresponding
"Cloud server location" and click on "Done".

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

53 de 108 23/5/22 18:48

https://www.jetbrains.com/community/education/#students
https://www.jetbrains.com/community/education/#students
https://firebase.google.com/
https://firebase.google.com/
https://plausible.io/
https://plausible.io/
https://firebase.google.com/docs/rules
https://firebase.google.com/docs/rules
https://js-firebase-tutorials.netlify.app/validation/#Step5-FirebaseSecurityRules
https://js-firebase-tutorials.netlify.app/validation/#Step5-FirebaseSecurityRules

Figure 4-2. Firestore Security Rules

9. We will now see the Firestore database console. In the jargon of Firestore, tables are called "collections", and records
(table rows) are called "documents". We use the platform-independent terminology (records and tables) along with the
Firestore jargon ("documents" and "collections"). For creating your first Firestore collection (database table), click on
"Start collection", enter the collection name books, and then click on "Next".

10. Click on "Add document" to create your first Firestore document (record). Fill out the Document ID and the other three
fields: isbn (string), title (string), year (number), as in Figure 4-3. Creating the first Firestore document/record.
Notice that we are assigning the same ISBN code to the Document ID. After clicking on "Save" we see the first
Firestore document on the database console.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

54 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__figAddDocument

Figure 4-3. Creating the first Firestore document/record

4.1.3 Set up a Firebase web app and hosting URL

11. Go to the Project Overview and click on the "web" icon "</>", next to the icons of iOS, Android and Unity.

12. Give your web app a meaningful name, and then make sure to check "Also set up Firebase Hosting for this app". An
auto-generated name will be given to the website hosting, but you can change it, needing only to make sure it is unique.
Remember that here is where you define the free and public URL of your Firebase web app, which always ends with
".web.app". Click on "Register App".

13. After waiting while the app is initialized, you will see the Firebase SDK configuration. Save it for later since you need it
to initialize the access to your Firebase application. Notice that you can always find it on the Firebase project
configuration page.

You have just created your Firebase web app and the production environment where it resides.

4.1.4 Set up the local environment

Now you need to set up your local environment to run and test the web app while you develop, from which you will deploy
to your production environment located on your Firebase Hosting instance.

14. Download the code of the Minimal App on your computer, and after uncompressing the ZIP file 1-MinimalApp.zip
you will find a folder named 1-MinimalApp. This folder is the repository of every document of the web app, and it is

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

55 de 108 23/5/22 18:48

https://firebase.google.com/docs/web/learn-more#config-object
https://firebase.google.com/docs/web/learn-more#config-object
https://firebase.google.com/docs/web/learn-more#config-object
https://firebase.google.com/docs/web/learn-more#config-object
https://js-firebase-tutorials.netlify.app/minimal/index_files/1-MinimalApp.zip
https://js-firebase-tutorials.netlify.app/minimal/index_files/1-MinimalApp.zip

also used as your local Git repo folder.

15. Create or open a new project on your editor, the 1-MinimalApp folder the root of your project. Inside, the subfolder
public is accompanied by files related to the Firebase web app: firebase.json, firebase.indexes.json,
firebase.rules, and package.json. The subfolder js in the public folder for our JavaScript source code files, and
along with two subfolders m, and v, follow the Model-View-Controller paradigm for software application architectures. In
the subfolder js there is a file named initFirebase.mjs, an ES6 module file in charge of initializing the web app
interface with the Firebase APIs. And finally, there are many HTML files, among them the index.html file, the app's
start page. Thus, we end up with the following folder structure:

1-MinimalApp
 public
 js
 m
 v
 initFirebase.mjs
 index.html

Notice that the js folder only contains two subfolders m and v (for model and view), not including a c folder since the
minimal app doesn't include any controller code.

16. Open a terminal (e.g., the Windows Power Shell) when you are located in the folder 1-MinimalApp. On WebStorm you
can open a terminal window if you click on the tab "Terminal" at the bottom of the editor view. Run the following NPM
command to install the latest version of the core Firebase SDK:

npm install firebase

Finally, click on "Next" on the Firebase Console to continue the set-up process.

17. Logging in your Google account by executing the following command:

firebase login

You can find out which Google account is logged in with the command "firebase login".

[Tip] You can log out your Firebase session by executing:

firebase logout

18. Install the Firebase CLI running:

npm install -g firebase-tools

Notice that you keep your Firebase CLI up-to-date every time you run this command.

19. And then initialize Firebase on your local environment by executing:

firebase init

20. Now you will go through the Firebase initialization process of your project in your local environment by following a

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

56 de 108 23/5/22 18:48

https://firebase.google.com/docs/cli
https://firebase.google.com/docs/cli
https://firebase.google.com/docs/cli

sequence of questions. When you are prompted with the question "Which Firebase CLI features do you want to set up for
this directory?" make sure to select the following two options by using the space bar (Figure 4-4. Through the Firebase
project initialization process):

!"Firestore: Deploy rules and create indexes for Firestore

!"Hosting: Configure and deploy Firebase Hosting sites

Press Enter to continue to the next question.

Figure 4-4. Through the Firebase project initialization process

21. When prompted for choosing the Firebase project to initialize "First, let's associate this project directory with a Firebase
project", use the arrow keys and select “Use an existing project” and then select the previously created Firebase project:
i.e. "my awesomeweb-xxxxx".

[Tip] If you are not prompted for choosing any Firebase project, delete the hidden file .fireserc located in your
project folder and start over initializing the project. Optionally, you could run the following command to be prompted to
select a Firebase project and assign an alias:

firebase use --add

22. Press Enter to name the Firestore Security Rules file with the default name firestore.rules.

23. Press Enter to name the Firestore Indexes file with the default name firestore.indexes.json.

24. Press Enter to name the public directory with the default name public.

25. Press N when you are asked if you want to turn your web-based app into a single-page app.

26. Optionally, you can link your project to your GitHub repository to automate deployments to Firebase Hosting every time
you push changes to your repo. When asked "Set up automatic builds and deploys with GitHub? (y/N)" answer
accordingly and follow these directions in the official Firebase documentation.

27. Finally you will see the message “Firebase initialization complete!”. An index.html and a 404.html files have been
created.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

57 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase__FirebaseInitProcess
https://firebase.google.com/docs/hosting/github-integration
https://firebase.google.com/docs/hosting/github-integration

28. Go back to the Firebase Console on your web browser, and click on "Continue to Console". We now know that Firebase
has been initialized and running on our computer.

4.1.5 Running your Firebase web app locally

28. For testing your app locally, run on terminal:

firebase serve

By default, the local server runs using the port 5000: http://localhost:5000.

If you need to stop your local server, you can press Ctrl + C on Windows, Linux or Mac.

4.1.6 Firebase Local Emulator Suite (optional)

When we work on web development and run our app on our local environment, we are using the Hosting Emulator in the
background, mimicking the actual behaviour of our Firebase Hosting, but on local. The Hosting Emulator is part of the
Firebase Local Emulator Suite, allowing developers to build and test apps locally using almost every Firebase service
available on the cloud. Firebase Local Emulator includes Cloud Firestore, Realtime Database, Cloud Storage,
Authentication, Cloud Functions, and Firebase Hosting.

Start the Local Emulator Suite in your project by executing

firebase emulators:start

Once running, Firebase Emulator emulates every Firebase service initialized in your project locally. If we start Firebase
Emulator, we would see two emulators running, one for Firestore and another for Firebase Hosting, with links to access their
Emulator UIs.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

58 de 108 23/5/22 18:48

http://localhost:5000/
http://localhost:5000/

Figure 4-5. Firebase Local Emulator Suite

Learn more about the Firebase Local Emulator Suite in the Firebase documentation.

4.1.7 Deploy your app on the production environment

29. For making our app public, we can deploy it to Firebase Hosting by running:

firebase deploy

Visit the public web app by clicking on the URL provided on the terminal. You might want to know more about testing
locally and deploying your app on Firebase.

4.1.8 Defining and testing your first Security Rules

Previously, in the Firestore database setup process, we chose to "Start in test Mode" to get started with your database
quickly, but now we need to define better Security Rules.

Security Rules in test mode leaves the database open to anyone on the Internet to read and write/change without restrictions.
That is why Firestore forces us to update the Security Rules after 30 days from the day we created the database. To make our
web app work beyond that 30-day limitation, you can set up a more advanced Firebase Security Rules configuration.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

59 de 108 23/5/22 18:48

https://firebase.google.com/docs/emulator-suite
https://firebase.google.com/docs/emulator-suite
https://firebase.google.com/docs/hosting/deploying
https://firebase.google.com/docs/hosting/deploying
https://firebase.google.com/docs/hosting/deploying
https://firebase.google.com/docs/hosting/deploying

Notice that the following Security Rules are just meant to continue running our app beyond the 30-day limitation in this
educational context, but they do not provide a significaant database security measure in a real-world situation. Hence,
remember to strengthen these basic rules to protect an actual web application accordingly. We encourage you to deepen into
the Firestore Security Rules by reading more on the subject in the Firebase Documentation.

1. On your IDE (maybe WebStorm), open the file firestore.rules.

2. Replace the content of the file with this snippet:

rules_version = '2';
service cloud.firestore {
 match /databases/{database}/documents {

// Allow anyone
 match /{document=**} {
 allow rreeaadd, wwrriittee; // or allow read, write: if true;
 }
 }
}

3. Deploy the project by running:

firebase deploy

Notice that the correct workflow for updating Security Rules is first editing the rules on your local version
(firestore.rules) using your editor and then deploying the project to the cloud in such a way that you are updating
both your local rules and the rules on the Firebase Console at the same time. If you edit the rules on the Firebase
Console, your local version will be outdated, and you will overwrite the new ones with the outdated version.

4. To ensure the Security Rules have been deployed correctly, you can go to the Firebase Console, go to the Firestore
database console, and click on the horizontal tab “Rules”. You must see the same snippet recently deployed.

5. For testing the rules, click on the “Rules playground” tab.

6. On “Location” enter "/books/Auto-ID".

7. Click on “Run”, and you should see a message in green color saying “Simulated read allowed”.

8. Finally, click on "Publish" to deploy the new Security Rules:

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

60 de 108 23/5/22 18:48

https://firebase.google.com/docs/rules
https://firebase.google.com/docs/rules

Figure 4-6. Setting up and Testing Security Rules

This may be a good time to try out our "Hello World" web app before continuing towards the next step.

4.1.9 Set up Node.js Dependencies

As we discussed before, a plain JavaScript application using the Firebase Web SDK relies totally on Node.js behind the
scenes, so we need to know about the Node.js dependencies that Firebase needs in your local development environment and
how to keep them updated and healthy.

In this second step, we locate the package.json file, which contains essential metadata that configures and describes a
Node.js project, as a Firebase project is, defining attributes that NPM uses to install dependencies, run scripts, identify the
application's entry point, and others that determine how our application interacts and runs. It is thus of crucial importance to
understand the role of package.json in the JavaScript ecosystem.

On your editor, open the package.json file, and pay attention to the attribute "dependencies" in the JSON object located
inside:

{
"name": "js-firebase-minimal-app",
"version": "1.1.0",
"description": "Part 1: Learn how to build a Minimal Web App using JS and Firebase",
"homepage": "https://minimalapp-ea662.web.app/tutorial",
"keywords": [
"javascript",
"firebase",
"firestore",
"crud",
"firebase SDK version 9",
"minimal"

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

61 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp
https://js-firebase-tutorials.netlify.app/minimal/index.html#Apendix-HelloWorldApp

],
 ...
""ddeeppeennddeenncciieess"":: {{

 ""ffiirreebbaassee"":: ""̂ X̂X..XX..XX"",,
 ""ffiirreebbaassee--ffiirreessttoorree--lliittee"":: ""̂ X̂X..XX..XX"",,
 ""ffiirreebbaassee--aauutthh"":: ""̂ X̂X..XX..XX""
 }},
 ...
}

We see three Firebase SDK libraries and their corresponding versions. That means we need those libraries installed in our
local environment to run the Minimal App. Run the following command to install the defined dependencies. WebStorm
highlights the dependencies not found in the local environment, facilitating to know that we still need to fix something.

npm install

Then the folder "node_modules" is generated with all the dependencies.

Whenever you want to reset all the dependencies and ensure a healthy local environment, you can safely delete the
node_modules directory and run npm install again.

Since Firebase Hosting is in fact a Node.js environment, whenever we deploy our app, the Node.js dependencies are not
likewise deployed, but the package.json file is read to set up in the production environment every dependence appropriately
defined.

Firebase is permanently updated; therefore, sometimes, we need to update our package.json file with the latest versions
of the defined dependencies. Use the following command to update the package.json file along with your dependencies.

npm i firebase

Learn about all the package.json attributes with the official npm guide.

Note for WebStorm users

When writing JavaScript code with Firebase SDK libraries on WebStorm we may see functions, methods or objects as
errors. If that happens, just delete the node_modules folder and run npm install again.

Optionally, only for seeing correctly formatted Firebase Rules files (firestore.rules), also on
Settings/Preferences go to Plugins and search for "Firebase" on the search bar. You will find a third-party
plugin named Firebase Rules Syntax Highlighter, select it and install it.

4.1.10 Initialize Firebase

In the second step, we initialize an interface for our Firestore instance. We start by creating an ES6 module file named
initFirebase.mjs located in the root of the js folder, which first statements import the functions we need from the
JavaScript versions of the Firebase SDK libraries. We always initialize Firestore through Firebase, so we import the

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

62 de 108 23/5/22 18:48

https://docs.npmjs.com/cli/v7/configuring-npm/package-json
https://docs.npmjs.com/cli/v7/configuring-npm/package-json

initializeApp() function from the core Firebase SDK library (firebase-app.js), and the getFirestore()
function from the Firestore Lite Web SDK (firebase-firestore-lite.js), introduced from Firebase Web SDK
version 9, and designed to improve performance of the most basic read/write operations.

iimmppoorrtt { initializeApp } from "https://www.gstatic.com/firebasejs/9.X.X/ffiirreebbaassee--aapppp..jjss";
iimmppoorrtt { getFirestore } from "https://www.gstatic.com/firebasejs/9.X.X/ffiirreebbaassee--ffiirreessttoorree--lliittee..jjss

To start using Firestore we initialize a Firebase App instance for our app, using the values taken from the web app's Firebase
project configuration page and pass them as a parameter in a variable named firebaseConfig to invoke the
initializeApp() function. The Firebase App instance object is from now on available in our session, containing
configuration information that is consumed across other Firebase services, such as Firestore or Firebase Authentication.

// TODO: Replace the following with your web app's Firebase project configuration
ccoonnsstt ffiirreebbaasseeCCoonnffiigg = {
 apiKey: "XX",
 authDomain: "minimalapp-XXXX.firebaseapp.com",
 projectId: "minimalapp-XXXX",
 appId: "1:XXXXXXXXXXXX:web:XXXXXXXXXXXXXXXXXXXXXXX"
};
// Initialize a Firebase App object
iinniittiiaalliizzeeAApppp(ffiirreebbaasseeCCoonnffiigg);

Once the Firebase App instance has been initialized, we can initialize Cloud Firestore using the getFirestore() function
to create the fsDb object that works now as an interface to our Firestore DB instance.

// Initialize Firestore interface
ccoonnsstt ffssDDbb = getFirestore();

Finally, the fsDb object is exported and becomes available to other procedures in the minimal app.

eexxppoorrtt { fsDb };

4.1.11 Changing names of Firestore SDK's functions

You may have noticed that formerly we named the Firebase database instance object as "db", but now we have named it
"fsDb" since we find this name more meaningful and straightforward once we use it in our code. Additionally, we find three
names of the original Firestore SDK JS version 9 functions are too generic, violating good practice conventions, and may
turn our code confusing, so we propose to rename them like:

Table 4-2. Change of Firebase SDK's
function names

Original Firestore name Rename

doc fsDoc

collection fsColl

query fsQuery

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

63 de 108 23/5/22 18:48

https://firebase.google.com/docs/web/learn-more#config-object
https://firebase.google.com/docs/web/learn-more#config-object
https://firebase.google.com/docs/web/learn-more#config-object
https://firebase.google.com/docs/web/learn-more#config-object

The name changes happen when the functions are imported from the Firestore SDK library.

iimmppoorrtt { collection as ffssCCoollll, doc as ffssDDoocc, query as ffssQQuueerryy } from "https://www.gstatic.com/firebasejs/9.

4.2. Step 2: Write the Model Code

In the third step, we write the code of our model class and save it in a specific model class file. In an MVC app, the model
code is the most critical part of the app, and it's also the basis for writing the view and controller code. Large parts of the
view and controller code could be automatically generated from the model code, and many MVC frameworks provide this
kind of code generation.

In the information design model shown in Figure 2-1. The built-in JavaScript classes Object and Function, there is only
one class, representing the object type Book. So, in the folder js/m, we create a file Book.mjs.

As Book.mjs is a ES6 module, its initial statements import the fsDb object to interface our Firestore instance, and the
functions from the Firestore Lite Web SDK library that later are invoked to write/read operations using instances of the
model class Book.

iimmppoorrtt { fsDb } from "../initialize.mjs";
iimmppoorrtt { collection as fsColl, deleteDoc, doc as fsDoc, getDoc, getDocs, setDoc, updateDoc }
 from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore-lite.js";

The model class Book is coded as a JavaScript class with a constructor function defining 1) a single constructor parameter in
the form of a record using ES6 function parameter destructuring, and 2) the attributes isbn, title and year.

ccllaassss BBooookk {
 constructor({isbn, title, year}) {

tthhiiss.isbn = isbn;
tthhiiss.title = title;
tthhiiss.year = year;

 }
}

In addition to defining the model class, we also define the following items in the Book.mjs file:

1. A class-level method Book.retrieve for loading only one book record/document.

2. A class-level method Book.retrieveAll for loading all managed book records/documents.

3. A class-level method Book.add for creating a new book record/document.

4. A class-level method Book.update for updating an existing book record/document.

5. A class-level method Book.destroy for deleting a book record/document.

6. A class-level method Book.createTestData for creating a few example book records/documents to be used as test
data.

7. A class-level method Book.clearData for clearing the book table/collection.

4.2.1 Creating a new BBooookk record

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

64 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript
https://js-firebase-tutorials.netlify.app/minimal/index.html#Concepts-JavaScriptBasics__TheBuiltInJavaScript

Since database access operations can fail, we always call them in a try-catch block to follow up with an error message
whenever the input operation fails.

The following Book.add procedure takes care of creating a new book record/document and adding it to the Firebase
table/collection "books":

Book.aadddd = aassyynncc ffuunnccttiioonn (slots) {
ccoonnsstt booksCollRef = fsColl(fsDb, "books"),

 bookDocRef = fsDoc (booksCollRef, slots.isbn);
 slots.year = ppaarrsseeIInntt(slots.year); // convert from string to integer
ttrryy {
aawwaaiitt sseettDDoocc(bookDocRef, slots);

 console.log(`Book record ${slots.isbn} created.`);
 } ccaattcchh(e) {
 console.error(`EErrrroorr when adding book record: ${e}`);
 }
};

4.2.2 Retrieving a BBooookk record

For retrieving a book record/document we use the Book.retrieve() procedure that is called with a parameter isbn:

Book.rreettrriieevvee = aassyynncc ffuunnccttiioonn (isbn) {
 let bookDocSn = null;
ttrryy {
ccoonnsstt bookDocRef = fsDoc(fsDb, "books", isbn);

 bookDocSn = aawwaaiitt ggeettDDoocc(bookDocRef);
 } ccaattcchh(e) {
 console.error(`EErrrroorr when retrieving book record: ${e}`);

rreettuurrnn null;
 }
ccoonnsstt bookRec = bookDocSn.data();
rreettuurrnn bookRec;

};

4.2.3 Retrieving all BBooookk records

For retrieving the book records/documents from the Firestore "books" table collection, we use the Book.retrieveAll
procedure:

Book.rreettrriieevveeAAllll = aassyynncc ffuunnccttiioonn () {
 let booksQrySn = null;
ttrryy {
ccoonnsstt booksCollRef = fsColl(fsDb, "books");

 booksQrySn = aawwaaiitt ggeettDDooccss(booksCollRef);
 } ccaattcchh(e) {
 console.error(`EErrrroorr when retrieving book records: ${e}`);

rreettuurrnn null;
 }
ccoonnsstt bookDocs = booksQrySn.docs,

 bookRecs = bookDocs.map(d => d.data());
 console.log(`${bookRecs.length} book records retrieved.`);

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

65 de 108 23/5/22 18:48

rreettuurrnn bookRecs;
};

4.2.4 Updating a BBooookk record

For updating an existing book record/document, we first retrieve it from the Firestore "books" table/collection, and then re-
assign those attributes the value of which has changed. Here is the full code of the procedure:

Book.uuppddaattee = aassyynncc ffuunnccttiioonn (sslloottss) {
ccoonnsstt updSlots = {};
// retrieve up-to-date book record
ccoonnsstt bookRec = await Book.retrieve(slots.isbn);
// convert from string to integer
iiff (slots.year) slots.year = ppaarrsseeIInntt(slots.year);
// update only those slots that have changed
iiff (bookRec.title !== slots.title) uuppddSSlloottss.title = slots.title;
iiff (bookRec.year !== slots.year) uuppddSSlloottss.year = slots.year;
iiff (OObbjjeecctt..kkeeyyss(uuppddSSlloottss).length > 0) {
ttrryy {
ccoonnsstt bookDocRef = fsDoc(fsDb, "books", slots.isbn);
aawwaaiitt uuppddaatteeDDoocc(bookDocRef, updSlots);

 console.log(`Book record ${slots.isbn} modified.`);
 } ccaattcchh(e) {
 console.error(`EErrrroorr when updating book record: ${e}`);
 }
 }
};

Notice that since the updSlots map may contain a variable number of property-value slots, we need to test if it's not empty
by converting the map to an array of keys with Object.keys.
4.2.5 Deleting a BBooookk record

A book record/document is deleted from the Firestore "books" table/collection using the Book.destroy procedure:

Book.ddeessttrrooyy = aassyynncc ffuunnccttiioonn (iissbbnn) {
ttrryy {
aawwaaiitt ddeelleetteeDDoocc(fsDoc(fsDb, "books", isbn));

 console.log(`Book record ${isbn} deleted.`);
 } ccaattcchh(e) {
 console.error(`EErrrroorr when deleting book record: ${e}`);
 }
};

4.2.6 Creating test data

To test our code, we may create some test data and save it in our Firestore DB. We first create an array of book records.
Then, to use the Promise.all function, we map each book record, "bookRec", to an Book.add() procedure invocation
expression of the following form:

await PPrroommiissee..aallll(bookRecs.mmaapp(d => BBooookk..aadddd(d)));

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

66 de 108 23/5/22 18:48

Notice that Promise.all allows invoking a list of asynchronous operations, which are not executed sequentially but
simultaneously.

Book.ggeenneerraatteeTTeessttDDaattaa = aassyynncc ffuunnccttiioonn () {
 let bookRecs = [
 {
 isbn: "006251587X",
 title: "Weaving the Web",
 year: 2000},
 {
 isbn: "0465026567",
 title: "Gödel, Escher, Bach",
 year: 1999
 },
 {
 isbn: "0465030793",
 title: "I Am A Strange Loop",
 year: 2008
 }
];
// save all book records

 await PPrroommiissee..aallll(bookRecs.mmaapp(d => Book.add(d)));
 console.log(`${OObbjjeecctt.keys(bookRecs).length} books saved.`);
};

4.2.7 Clearing all data

The following two-part procedure clears all data from our Firestore "books" table/collection:

1. First, a JS array (list) of all book records is retrieved from the Firestore DB using the Book.retrieveAll() procedure:

ccoonnsstt bookRecords = aawwaaiitt BBooookk..rreettrriieevveeAAllll();

2. All records/documents in the books table/collection are then deleted individually, invoking asynchronously the
Book.destroy() procedure:

await PPrroommiissee..aallll(bookRecs.mmaapp(b => BBooookk..ddeessttrrooyy(b.isbn)));

Here is the full code of the procedure:

Book.cclleeaarrDDaattaa = aassyynncc ffuunnccttiioonn () {
iiff (confirm("Do you really want to delete all book records?")) {
// retrieve all book documents from Firestore
ccoonnsstt bookRecs = aawwaaiitt BBooookk..rreettrriieevveeAAllll(());
// delete all documents

 await PPrroommiissee..aallll(bookRecs.map(b => BBooookk..ddeessttrrooyy(b.isbn)));
// ... and then report that they have been deleted

 console.log(`${OObbjjeecctt.values(bookRecs).length} books deleted.`);
 }
};

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

67 de 108 23/5/22 18:48

4.3. Step 3: Write the Start Page

In the start page HTML file of the app, index.html, besides adding event listeners for the buttons to generate and clear test
data in the DB with the help of the procedure Book.createTestData(), and for clearing all data with
Book.clearData(), we load the model class Book from the model class file Book.mjs:

<!DOCTYPE html>
<<hhttmmll xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">>
<<hheeaadd>>
<<mmeettaa charset="UTF-8"//>>
<<ttiittllee>>Minimal Web App with JS and Firebase<<//ttiittllee>>
<<mmeettaa name="description" content="A minimal effort web app with plain JS + Firebase."//>>
<<lliinnkk rel="icon" href="favicon.ico"//>>
<<ssccrriipptt type="module">>
iimmppoorrtt BBooookk ffrroomm ""..//jjss//mm//BBooookk..mmjjss"";

 window.addEventListener("load", function () {
 const clearButton = document.getElementById("clearData"),
 generateTestDataButtons = document.querySelectorAll("button.generateTestData");
 // set event handlers for the buttons "clearData" and "generateTestData"
 clearButton.addEventListener("click", BBooookk..cclleeaarrDDaattaa);
 for (const btn of generateTestDataButtons) {
 btn.addEventListener("click", BBooookk..ggeenneerraatteeTTeessttDDaattaa);
 }
 });
<<//ssccrriipptt>>

<<//hheeaadd>>
<<bbooddyy>>
...
<<//bbooddyy>>
<<//hhttmmll>>

The start page provides a menu for choosing one of the CRUD data management use cases. Each use case is performed by a
corresponding page such as, for instance, createBook.html.

<<bbooddyy>>
<<mmaaiinn>>
<<hh11>>Minimal App — Public Library<<//hh11>>
<<ddiivv class="subheading">>A Minimal effort Web App built with Plain JS and Firebase<<//ddiivv>>
<<pp>>This app supports the following operations:<<//pp>>
<<mmeennuu>>
<<llii>><<aa href="ccrreeaatteeBBooookk..hhttmmll">Create<<//aa>> a new book record<<//llii>>
<<llii>><<aa href="rreettrriieevveeAAnnddLLiissttAAllllBBooookkss..hhttmmll">Retrieve<<//aa>> and list all book records<<//llii>>
<<llii>><<aa href="uuppddaatteeBBooookk..hhttmmll">Update<<//aa>> a book record<<//llii>>
<<llii>><<aa href="ddeelleetteeBBooookk..hhttmmll">Delete<<//aa>> a book record<<//llii>>
<<llii style="margin-top: 1em">>
<<bbuuttttoonn id="clearData" type="button">>Clear database<<//bbuuttttoonn>>

<<//llii>>
<<llii>>
<<bbuuttttoonn class="generateTestData" type="button">>Generate test data<<//bbuuttttoonn>>

<<//llii>>
<<//mmeennuu>>

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

68 de 108 23/5/22 18:48

<<//mmaaiinn>>
<<//bbooddyy>>

4.4. Step 4: Implement the Create Use Case

For our example app, the user interface page for the CRUD use case Create is called createBook.html, located in the
1-MinimalApp folder. In its <head> element, it loads the view code file createBook.mjs, which sets up the Create user
interface:

<!DOCTYPE html>
<<hhttmmll xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">>
<<hheeaadd>>
<<mmeettaa charset="UTF-8"//>>
<<ttiittllee>>Minimal Web App with JS and Firebase: Create<<//ttiittllee>>
<<lliinnkk rel="icon" href="favicon.ico"//>>
<<ssccrriipptt src="js/v/ccrreeaatteeBBooookk..mmjjss" ttyyppee==""mmoodduullee""><<//ssccrriipptt>>

<<//hheeaadd>>
<<bbooddyy>>
...
<<//bbooddyy>>
<<hhttmmll>>

For a data management use case with user input, such as "Create", an HTML form is required as a user interface. The form
typically has a labelled <input> field for each attribute of the model class:

<<bbooddyy>>
<<hheeaaddeerr>>
<<hh11>>Create a new book record<<//hh11>>

<<//hheeaaddeerr>>
<<mmaaiinn>>
<<ffoorrmm id="Book">>
<<ddiivv>><<llaabbeell>>ISBN: <<iinnppuutt name="isbn"><<//llaabbeell>><<//ddiivv>>
<<ddiivv>><<llaabbeell>>Title: <<iinnppuutt name="title"><<//llaabbeell>><<//ddiivv>>
<<ddiivv>><<llaabbeell>>Year: <<iinnppuutt name="year"><<//llaabbeell>><<//ddiivv>>
<<ddiivv>>
<<bbuuttttoonn name="commit" type="button">>Create<<//bbuuttttoonn>>

<<//ddiivv>>
<<//ffoorrmm>>

<<//mmaaiinn>>
<<ffooootteerr>>
<<aa href="index.html">>« Back to main menu<<//aa>>

<<//ffooootteerr>>
<<//bbooddyy>>

The view code file js/v/createBook.mjs contains three statements:

1. import statements for the model class Book.

2. Variables declaration to access UI elements, for the <form> element, and the "create button" to save the user input data.

3. An addEventListener attached to click events on the "create button" takes the user input data from the input fields
and saves this data by calling the Book.add() procedure. Finally, it clears the form.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

69 de 108 23/5/22 18:48

iimmppoorrtt BBooookk from "../m/Book.mjs";

ccoonnsstt ffoorrmmEEll = document.forms["Book"],
 createButton = formEl["commit"];

createButton.aaddddEEvveennttLLiisstteenneerr("click", async ffuunnccttiioonn () {
ccoonnsstt slots = {

 isbn: formEl["isbn"].value,
 title: formEl["title"].value,
 year: formEl["year"].value
 };
 await BBooookk..aadddd(slots);
 formEl.reset();
});

4.5. Step 5: Implement the Retrieve/List All Use Case

The user interface for the CRUD use case Retrieve consists of an HTML table for displaying the data of all model objects.
For our example app, this page is called retrieveAndListAllBooks.html, located in the main folder 1-MinimalApp,
and it contains the following code in its <head> element:

<<hheeaadd>>
<<mmeettaa charset="UTF-8"//>>
<<ttiittllee>>Minimal Web App with JS and Firebase: Retrieve and List<<//ttiittllee>>
<<lliinnkk rel="icon" href="favicon.ico"//>>
<<ssccrriipptt src="js/v/rreettrriieevveeAAnnddLLiissttAAllllBBooookkss..mmjjss" ttyyppee==""mmoodduullee""><<//ssccrriipptt>>

<<//hheeaadd>>

We load the view code file (here: retrieveAndListAllBooks.mjs). This is the pattern we use for all four CRUD use
cases.

<<bbooddyy>>
<<hheeaaddeerr>>
<<hh11>>Retrieve and list all book records<<//hh11>>

<<//hheeaaddeerr>>
<<mmaaiinn>>
<<ttaabbllee id="books">
<<tthheeaadd>>
<<ttrr>>
<<tthh>>ISBN<<//tthh>>
<<tthh>>Title<<//tthh>>
<<tthh>>Year<<//tthh>>

<<//ttrr>>
<<//tthheeaadd>>
<<ttbbooddyy>><<//ttbbooddyy>>

<<//ttaabbllee>>
<<//mmaaiinn>>
<<bbrr>>
<<ffooootteerr>>
<<aa href="index.html">>« Back to main menu<<//aa>>

<<//ffooootteerr>>
<<//bbooddyy>>

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

70 de 108 23/5/22 18:48

In the view code we first import the model class Book, then invoke the retrieveAll() procedure to retrieve all book
records data from Firestore and then fill the table by creating a table row for each book object:

iimmppoorrtt BBooookk from "../m/Book.mjs";

ccoonnsstt bookRecords = await BBooookk..rreettrriieevveeAAllll(());

ccoonnsstt tableBodyEl = document.querySelector("table#books>tbody");

// for each book, create a table row with a cell for each attribute
ffoorr (ccoonnsstt bookRec of bookRecords) {
ccoonnsstt row = tableBodyEl.iinnsseerrttRRooww(());

 row.insertCell().textContent = bookRec.isbn;
 row.insertCell().textContent = bookRec.title;
 row.insertCell().textContent = bookRec.year;
}

More specifically, this procedure creates the view table in a loop over all array objects retrieved from the
Book.retrieveAll() procedure. In each step of this loop, a new row is created in the table body element with the help of
the JavaScript DOM operation insertRow(), and then three cells are made in this row with the help of the DOM operation
insertCell(): the first one for the isbn property value of the book object, and the second and third ones for its title
and year property values. Both, insertRow and insertCell have to be invoked with the argument -1 to ensure that new
elements are appended to the list of rows and cells.

4.6. Step 6: Implement the Update Use Case

Also for the Update use case, we have an HTML page for the user interface (updateBook.html) and a view code file
(js/v/updateBook.mjs). The HTML form for the UI of the "update book" operation has a selection field for choosing
the book to be updated, an <output> field for the standard identifier attribute isbn, and an <input> field for each attribute
of the model class Book that it is filled with its respective value that can be updated with a new value. Notice that by using
an <output> field for the standard identifier attribute, we do not allow changing the standard identifier of an existing
object.

<<mmaaiinn>>
<<ffoorrmm id="Book">>
<<ddiivv>>
<<llaabbeell>>Select book:
<<sseelleecctt name="selectBook">>
<<ooppttiioonn value="">> ---<<//ooppttiioonn>>

<<//sseelleecctt>>
<<//llaabbeell>>

<<//ddiivv>>
<<ddiivv>><<llaabbeell>>ISBN: <<oouuttppuutt name="isbn"><<//oouuttppuutt>><<//llaabbeell>><<//ddiivv>>
<<ddiivv>><<llaabbeell>>Title: <<iinnppuutt name="title"><<//llaabbeell>><<//ddiivv>>
<<ddiivv>><<llaabbeell>>Year: <<iinnppuutt name="year"><<//llaabbeell>><<//ddiivv>>
<<ddiivv>>
<<bbuuttttoonn name="commit" type="button">>Update<<//bbuuttttoonn>>

<<//ddiivv>>
<<//ffoorrmm>>

<<//mmaaiinn>>

Notice that we include a kind of empty <option> element, with a value of "" and a display text of ---, as a default choice

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

71 de 108 23/5/22 18:48

in the selectBook selection list element. So, by default, the value of the selectBook form control is empty, requiring
the user to choose one of the available options for filling the form.

The view code populates the select element's option list by loading the collection of all book objects from the Firestore
"books" table/collection using the Book.retrieveAll() function, and then creating an option element for each book
object.

ccoonnsstt bookRecords = await BBooookk..rreettrriieevveeAAllll(());

ccoonnsstt formEl = document.forms["Book"],
 updateButton = formEl["commit"],
 selectBookEl = formEl["selectBook"];

// fill select with options
ffoorr (ccoonnsstt bookRec of bookRecords) {
ccoonnsstt optionEl = document.ccrreeaatteeEElleemmeenntt((""ooppttiioonn""));

 optionEl.text = bookRec.title;
 optionEl.value = bookRec.isbn;
 selectBookEl.add(optionEl, null);
}

A book selection event is caught via a listener for change events on the select element. When a book is selected, the form
is filled with its data retrieved using the Book.retrieve() function:

selectBookEl.aaddddEEvveennttLLiisstteenneerr("change", async ffuunnccttiioonn () {
ccoonnsstt isbn = selectBookEl.value;
iiff (isbn) {
// retrieve up-to-date book record
ccoonnsstt bookRec = await BBooookk..rreettrriieevvee(isbn);

 formEl["isbn"].value = bookRec.isbn;
 formEl["title"].value = bookRec.title;
 formEl["year"].value = bookRec.year;
 } eellssee {
 formEl.reset();
 }
});

When the save button is activated, a slots record is created from the form field values and used as the argument for calling
Book.update:

updateButton.aaddddEEvveennttLLiisstteenneerr("click", async ffuunnccttiioonn () {
ccoonnsstt slots = {

 isbn: formEl["isbn"].value,
 title: formEl["title"].value,
 year: formEl["year"].value
 },
 bookIdRef = selectBookEl.value;
iiff (!bookIdRef) rreettuurrnn;

 await BBooookk..uuppddaattee(slots);
// update the selection list option element

 selectBookEl.options[selectBookEl.selectedIndex].text = slots.title;
 formEl.reset();

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

72 de 108 23/5/22 18:48

});

4.7. Step 7: Implement the Delete Use Case

The user interface for the Delete use case just has a <select> field for choosing the book to be deleted:

<<mmaaiinn>>
<<ffoorrmm id="Book">>
<<ddiivv>>
<<llaabbeell>>Select book:
<<sseelleecctt name="selectBook">
<<ooppttiioonn value="">> ---<<//ooppttiioonn>>

<<//sseelleecctt>>
<<//llaabbeell>>

<<//ddiivv>>
<<ddiivv>>
<<bbuuttttoonn name="commit" type="button">>Delete<<//bbuuttttoonn>>

<<//ddiivv>>
<<//ffoorrmm>>

<<//mmaaiinn>>

Like in the Update case, the view code in js/v/deleteBook.mjs loads the book data into main memory, populates the
book selection list and adds some event listeners. The event handler for Delete button click events has the following code:

ccoonnsstt bookRecords = await BBooookk..rreettrriieevveeAAllll(());

ccoonnsstt formEl = document.forms["Book"],
 deleteButton = formEl["commit"],
 selectBookEl = formEl["selectBook"];

ffoorr (ccoonnsstt bookRec of bookRecords) {
ccoonnsstt optionEl = ddooccuummeenntt..ccrreeaatteeEElleemmeenntt((""ooppttiioonn""));

 optionEl.text = bookRec.title;
 optionEl.value = bookRec.isbn;
 selectBookEl.add(optionEl, null);
}

deleteButton.aaddddEEvveennttLLiisstteenneerr("click", async ffuunnccttiioonn () {
ccoonnsstt isbn = selectBookEl.value;
iiff (!isbn) rreettuurrnn;
iiff (confirm("Do you really want to delete this book record?")) {

 await BBooookk..ddeessttrrooyy((iissbbnn));
// remove deleted book from select options

 selectBookEl.remove(selectBookEl.selectedIndex);
 }
});

You can run the minimal app from our server or download the code as a ZIP archive file.

4.8. Points of Attention

4.8.1 Styling the User Interface

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

73 de 108 23/5/22 18:48

https://js-firebase-minimal.web.app/
https://js-firebase-minimal.web.app/
https://js-firebase-tutorials.netlify.app/minimal/index_files/1-MinimalApp.zip
https://js-firebase-tutorials.netlify.app/minimal/index_files/1-MinimalApp.zip

For simplicity, we have used raw HTML with minimal CSS styling. But a user interface (UI) should be appealing. So, the
code of this app should be extended by adding suitable CSS style rules.

Today, the UI pages of a web app have to be adaptive (frequently called "responsive") for being rendered on different
devices with different screen sizes and resolutions. The main issue of an adaptive UI is to have a fluid layout, in addition to
proper viewport settings. Whenever images are used in a UI, we also need an approach for adaptive bitmap images: serving
images in smaller/larger sizes for smaller/large screens (and in higher resolutions for high-resolution screens), while
preferring scalable SVG images for diagrams and artwork. In addition, we may decrease the font-size of headings and
suppress unimportant content items on smaller screens.

For our purposes and keeping things simple, we have customized the adaptive web page design defined by the HTML5
Boilerplate project (more precisely, the minimal "responsive" configuration available on www.initializr.com). It consists of
an HTML template file and two CSS files: the browser style normalization file normalize.css and a main.css, which
contains the HTML5 Boilerplate style and our customizations. Consequently, we use a new css subfolder containing these
two CSS files:

1-MinimalApp-with-CSS
 public
 css
 main.css
 normalize.css
 js
 m
 v
 index.html

We define our own styles for <table>, <menu> and <form> elements, in main.css. Concerning the styling of HTML
forms, we define a simple style for implicitly labeled form control elements.

The start page index.html now must take care of loading the CSS files with the help of the following two link elements:

<<lliinnkk rel="stylesheet" href="css/normalize.css">>
<<lliinnkk rel="stylesheet" href="css/main.css">>

Since the styling of user interfaces is not our primary concern, we do not discuss its details and leave it to our readers to take
a closer look. You can run the CSS-styled minimal app from our code or download its code as a ZIP archive file.

4.8.2 Catching invalid data

The app discussed in this chapter is limited to support the minimum functionality of a data management app, and it does not
prevent users from entering invalid data into the app's database. In Part 2 of this tutorial, we show how to express integrity
constraints in a model class and how to perform data validation both in the model/storage code of the app and in the user
interface code.

4.8.3 Boilerplate code

Another issue with the do-it-yourself code of this example app is the boilerplate code needed per model class for the data
storage management methods add, retrieve, update, and destroy. While it is good to write this code a few times for
learning app development, you don't want to write it again and again later when you work on real projects. In our
mODELcLASSjs tutorial, we present an approach to putting these methods in a generic form in a meta-class, such that they
can be reused in all model classes of an app.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

74 de 108 23/5/22 18:48

https://html5boilerplate.com/
https://html5boilerplate.com/
https://html5boilerplate.com/
https://html5boilerplate.com/
https://js-firebase-minimal-css.web.app/
https://js-firebase-minimal-css.web.app/
https://js-firebase-tutorials.netlify.app/minimal/index_files/1-MinimalApp-with-CSS.zip
https://js-firebase-tutorials.netlify.app/minimal/index_files/1-MinimalApp-with-CSS.zip
https://js-firebase-tutorials.netlify.app/validation/
https://js-firebase-tutorials.netlify.app/validation/
https://web-engineering.info/tech/mODELcLASSjs/validation-tutorial.html
https://web-engineering.info/tech/mODELcLASSjs/validation-tutorial.html

4.8.4 Serialization and de-serialization

Serializing a property's value means converting it to a suitable string value. For standard data types, such as numbers, a
standard serialization is provided by the predefined conversion function String, which doesn't have to be used in many
cases since the JS engine performs the serialization automatically.

When a string value, like "13" or "yes", represents the value of a non-string-valued attribute, it has to be de-serialized, that
is, converted to the range type of the attribute, before it is assigned to the attribute. This is the situation, for instance, when a
user has entered a value in a form input field for an integer-valued attribute. The values of form fields are always of type
string. Consequently, the value of a form input field for an integer-valued attribute has to be converted (de-serialized) to
an integer using the predefined conversion function parseInt.

For instance, in our example app, we have the integer-valued attribute year. When the user has entered a value for this
attribute in a corresponding form field, in the Create or Update user interface, the form field holds a string value, which has
to be converted to an integer in an assignment like the following:

this.year = ppaarrsseeIInntt(formEl.year.value);

One important question is: where should we take care of de-serialization: in the "view" (before the value is passed to the
"model" layer), or in the "model"? Since attribute range types are a business concern, and the business logic of an app is
supposed to be encapsulated in the "model", de-serialization should be performed in the "model" layer, and not in the
"view".

4.8.5 Synchronizing views with the model

When more than one user uses an app at the same time, we have to take care of somehow synchronizing the possibly
concurrent read/write actions of users such that users always have current data in their "views" and are prevented from
interfering with each other. This is a complicated problem, which is attacked differently by different approaches. It has been
mainly investigated for multi-user database management systems and large enterprise applications built on top of them.

The original MVC proposal included a data binding mechanism for automated one-way model-to-view synchronization
(updating the model's views whenever a change in the model data occurs). We didn't take care of this in our minimal app
because a front-end app with local storage doesn't have multiple concurrent users. However, we can create a (somewhat
artificial) situation that illustrates the issue:

1. Open the Update UI page of the minimal app twice (for instance, by opening updateLearningUnit.html twice),
such that you get two browser tabs rendering the same page.

2. Select the same learning unit on both tabs, such that you see its data in the Update view.

3. Change one data item of this learning unit on one of the tabs and save your change.

4. When you go to the other tab, you still see the old data value, while you may have expected it to be automatically
updated.

A mechanism for automatically updating all views of a model object whenever a change in its property values occurs is
provided by the observer pattern that treats any view as an observer of its model object. Applying the observer pattern
requires that

!"model objects can have a multi-valued reference property like observers, which holds a set of references to view objects;

!"a notify method can be invoked on view objects by the model object whenever one of its property values is changed; and

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

75 de 108 23/5/22 18:48

!"the notify method defined for view objects refreshes the user interface.

Notice, however, that the general model-view synchronization problem is not solved by automatically updating all (other
users') views of a model object whenever a change in its data occurs because this would only help if the users of these views
didn't make themselves any modification of the data item concerned, meanwhile. Otherwise, their changed data value would
be overwritten by the automated refresh, and they may not even notice this, which is not acceptable in terms of usability.

4.8.6 Architectural separation of concerns

From an architectural point of view, it is important to keep the app's model classes independent of

1. the user interface (UI) code because it should be possible to reuse the same model classes with different UI technologies;

2. the storage management code because it should be possible to reuse the same model classes with different storage
technologies.

In this tutorial, we have kept the model class Book independent of the UI code since it does not contain any references to UI
elements, nor does it invoke any view method. However, for simplicity, we didn't keep it independent of storage
management code since we have included the method definitions for add, update, destroy, etc., which invoke the storage
management methods of JavaScrpt's localStorage API. Therefore, the separation of concerns is incomplete in our
minimal example app.

We show in our mODELcLASSjs tutorial how to achieve a complete separation of concerns by defining abstract storage
management methods in a special storage manager class, which is complemented by libraries of concrete storage
management methods for specific storage technologies, called storage adapters.

4.8.7 404 Pages

Whenever a Firebase project is set up, a 404.html document is generated in the root folder, generally named "public". The
primary purpose of this web page is to attend to a crucial -but often unattended- issue of the user experience on web apps
and sites: address errors when a web page is not found within a web server. This may happen for several reasons, like a web
page being renamed, moved to another folder, or simply because it doesn't exist anymore. Nevertheless, the consequence
will always be that the user will be unable to find specific content or resource that previously existed. Web apps and sites are
dynamic entities that change along with their life, so handling this issue is a good practice. Another goal of 404 pages is to
turn a potential negative user experience into a positive one by providing the necessary information that guides the user to
find the new location of the seek resource. 404 pages contain links to help users exit successfully from the error page.

4.9. Quiz Questions

4.9.1 Question 1: Properties/methods of a model class

Which of the following are properties or methods of a model class Book? Select one or more:

☐ Book.retrieveAll

☐ Book.update

☐ Book.destroy

☐ Book.save

☐ Book.retrieve

☐ Book.load

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

76 de 108 23/5/22 18:48

https://web-engineering.info/tech/mODELcLASSjs/validation-tutorial.html
https://web-engineering.info/tech/mODELcLASSjs/validation-tutorial.html

☐ Book.instances

☐ Book.add

4.9.2 Question 2: Using the output element

In which CRUD use case does the user interface include an HTML output element? Select one or more:

☐ Retrieve/list all

☐ Update

☐ Delete

☐ Create

4.9.3 Question 3: Entity tables

Which of the following tables represent entity tables for a model class Book? Select one or more:

☐

Key Value

1 ["006251587X", "Weaving the Web", 2000]

2 ["0465026567", "Gödel, Escher, Bach", 1999]

3 ["0465030793", "I Am A Strange Loop", 2008]

☐

Key Value

1 { isbn:"006251587X", title:"Weaving the Web", year:2000 }

2 { isbn:"0465026567", title:"Gödel, Escher, Bach", year:1999 }

3 { isbn:"0465030793", title:"I Am A Strange Loop", year:2008 }

☐

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

77 de 108 23/5/22 18:48

Key Value

006251587X { isbn:"006251587X", title:"Weaving the Web", year:2000 }

0465026567 { isbn:"0465026567", title:"Gödel, Escher, Bach", year:1999 }

0465030793 { isbn:"0465030793", title:"I Am A Strange Loop", year:2008 }

☐

Key Value

006251587X ["006251587X", "Weaving the Web", 2000]

0465026567 ["0465026567", "Gödel, Escher, Bach", 1999]

0465030793 ["0465030793", "I Am A Strange Loop", 2008]

4.10. Practice Projects

4.10.1 Managing information about movies

The purpose of the app to be developed is managing information about movies. Like in the book data management app
discussed in the tutorial, you will use Firestore as the cloud database management system.

The app deals with just one object type: Movie, as depicted in the Figure 4-7. The object type Movie. In the subsequent
parts of the tutorial, you will extend this simple app by adding integrity constraints, enumeration attributes, further model
classes for actors and directors, and the associations between them.

Notice that releaseDate is an attribute with range Date, so you need to find out how to display, and support user input of,
calendar dates.

Figure 4-7. The object type Movie

movieId : Integer
title : String
releaseDate : Date

Movie

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

78 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-PracticeProject__fig-class-movie

For developing the app, simply follow the sequence of seven steps described in the tutorial:

1. Step 1 - Set up the Firebase Project

2. Step 2 - Write the Model Code

3. Step 3 - Initialize the Application

4. Step 4 - Implement the List Objects Use Case

5. Step 5 - Implement the Create Object Use Case

6. Step 6 - Implement the Update Object Use Case

7. Step 7 - Implement the Delete Object Use Case

You can use the following sample data for testing:

Table 4-3. Sample data

Movie ID Title Release date

1 Pulp Fiction 1994-05-12

2 Star Wars 1977-05-25

3 Casablanca 1943-01-23

4 The Godfather 1972-03-15

Make sure that

1. your HTML pages comply with the XML syntax of HTML5,

2. international characters are supported by using UTF-8 encoding for all HTML files,

3. your JavaScript code complies with our Coding Guidelines and is checked with JSHint (for instance, instead of the
unsafe equality test with "==", always the strict equality test with "===" has to be used).

Chapter 5. Adding Access Control to the Minimal App with Firebase

As nearly every app requires to handle permissions to grant access to certain resources for specific users while
simultaneously restricting access for everyone else, we will extend our tutorial of the minimal app described before to show
how you can build a simple but effective access control handling solution.

On the one hand, we will use Firebase Authentication, which provides a backend solution to authenticate users to mobile
and web apps through a Firebase JS SDK library and ready-made UI libraries. On the other hand, we are going to grant and
restrict access to the four HTML pages of the CRUD data management use cases already implemented by manipulating the
DOM of our start page for enabling and disabling the items of the main menu, likewise as giving access for signing up and
signing in the web app.

Firebase Authentication supports user authentication using several methods, such as email and password, phone numbers,
popular federated social media and identity providers like Google, Apple, Facebook, Twitter, GitHub, Microsoft, Yahoo and

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

79 de 108 23/5/22 18:48

http://oxygen.informatik.tu-cottbus.de/webeng/Coding-Guidelines.html
http://oxygen.informatik.tu-cottbus.de/webeng/Coding-Guidelines.html
http://jshint.com/
http://jshint.com/

more. In this tutorial, we have chosen to use the traditional authentication method based on an email and password.

You can run the minimal app with access control from our server or download the code as a ZIP archive file.

5.1. Access Control

In the context of computer systems, whereas Access is the capability of users to conduct specific tasks in an app, device, or
network, Access Control is a selective grant or restriction of access to data, resources or features, and it consists of two
components: Authentication and Authorization.

Authentication vs authorization: as an example in the context of web development, while users authenticate whom they are
by using a password-based method, the web app authorizes individually specific administrative access to perform database
access operations, such as create, update, delete or retrieve and view a record or file. Usually, authorization follows
authentication, being users forced to prove their identities as genuine before a system grants them access.

5.1.1 Authentication

A user account establishes a relationship between a user identity and an app, device, or network, and Authentication is the
process of validating that users are whom they say to be, their user identity, for granting them access control. Authentication
aims to prove user identity.

According to Schneider, user authentication solutions can be categorized by:

1. Something you know: a password, personal identification number (PIN), challenge-response, etc.

2. Something you have: security token device/app, certificate, ID card, etc.

3. Something you are: DNA sequence, face/voice/retinal pattern, fingerprint, etc.

Credential

A credential is a digital document, object, or data structure that associates a user identity to a proof of authenticity. An
example of a credential may be an email and password combination.

5.1.2 Authorization

Authorization is the process of verifying what specific data/resources/features a particular user has access to. Authorization
aims to provide correct access.

User roles

User Roles are permissions defined that control access to data/resources/features according to authorization policies.

5.2. Using Firebase for Access Control

5.2.1 User Authentication Status

There are different types of authentication status the user has while using any app with Firebase Authentication:

!"Anonymous: a visitor who is "signed in" as anonymous in the background (unnoticeable) by the app. It is the opposite to
registered, having the user not provided (yet) email and password. The status before being upgraded to anonymous is
"visitor", and the upgrade happens programmatically when the visitor uses the app for the first time.

!"Registered: a user who has provided email and password, is already registered in the app, and can be:

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

80 de 108 23/5/22 18:48

https://js-firebase-minimal-accs-ctrl.web.app/
https://js-firebase-minimal-accs-ctrl.web.app/
https://js-firebase-tutorials.netlify.app/minimal/index_files/1-MinimalApp-with-access-control.zip
https://js-firebase-tutorials.netlify.app/minimal/index_files/1-MinimalApp-with-access-control.zip
https://www.cs.cornell.edu/courses/cs513/2005fa/NNLauthPeople.html
https://www.cs.cornell.edu/courses/cs513/2005fa/NNLauthPeople.html

#"With non-verified email.

#"With verified email.

5.2.2 Design of our Access Control Handling Solution

The design of our access control handling solution with Firebase Authentication includes the following features:

!"Use of the Firebase's email and password authentication method.

!"The access control policies grant access to user with authenticated status registered with a verified email to
change/write/read operations and restrict access to registered with non-verified email and anonymous users to read-only
operations.

!"Rather than relying on role-based access control, the solution will use the different user authentication statuses to
perform DOM operations on the main menu to implement access control policies to grant/restrict access to the database
management operations.

!"Protect the database with Firestore Security Rules that correspond with the defined access control policies, limiting hence
bypassing the front-end layer to get access directly to the database maliciously.

!"Individual pages allow users to sign up and sign in to the app using email and password.

!"Registered user must verify email for granting full access to change/write operations. A verification link should be sent
after the sign-up process, and once clicked on it, the user is upgraded to full access.

!"User's password can be changed if it is forgotten it. An email address must be submitted, and the app sends an email with
a link that the requested change is confirmed once clicked on it.

!"A sign out solution to handle when a registered user leaves the session, returning to the user authentication status
anonymous.

!"A UI that adapts to changes of the different user authentication statuses, allows users to sign up/in/out of the app. The
UI design should respond to user interactions with redirections, messages or restrictions.

5.2.3 Set up the Folder Structure and add access control files

The MVC folder structure of our minimal app with access control extends the structure of the minimal app by adding five
ES6 module files and four HTML files:

!"five ES6 module files: accessControl.mjs, actionHandler.mjs, resetPassword.mjs, signIn.mjs, signUp.mjs,
initFirebase.mjs, and

!"four HTML files: actionHandler.html, resetPassword.html, signIn.html, signUp.html.

Thus, we get the following folder structure:

1-MinimalApp-with-access-control
 public
 js
 m
 Book.mjs
 v

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

81 de 108 23/5/22 18:48

aacccceessssCCoonnttrrooll..mmjjss
aaccttiioonnHHaannddlleerr..mmjjss

 createBook.mjs
 deleteBook.mjs

rreesseettPPaasssswwoorrdd..mmjjss
 retrieveAndListAllBooks.mjs

ssiiggnnIInn..mmjjss
ssiiggnnUUpp..mmjjss

 update.mjs
iinniittFFiirreebbaassee..mmjjss

 404.html
aaccttiioonnHHaannddlleerr..hhttmmll

 createBook.html
 credits.html
 deleteBook.html
 favicon.ico
 index.html
 machine-build.svg

rreesseettPPaasssswwoorrdd..hhttmmll
 retrieveAndListAllBooks.html

ssiiggnnIInn..hhttmmll
ssiiggnnUUpp..hhttmmll

 update.html

We discuss the contents of the added files in the following sub-sections.

5.3. Step 1: Initialize Firebase Authentication

5.3.1 Enable Firebase Authentication

Go to the Firebase Console and click on the "Authentication" option in the main menu. Select the tab Sign-in Method and
enable the option "Email/Password" and the option "Anonymous".

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

82 de 108 23/5/22 18:48

Figure 5-1. Enabling sign-in providers in Firebase

5.3.2 Initialize Firebase Authentication

In the file initFirebase.mjs we add the Firebase user authentication interface, creating an interface to our authentication
instance in the "auth" object, which later is exported to be consumed by other ES6 modules that are part of the access
control handling solution:

iimmppoorrtt { initializeApp, ggeettAApppp, ggeettAAppppss } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-app.js"
iimmppoorrtt { getFirestore } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-firestore-lite.js"
iimmppoorrtt { ggeettAAuutthh } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-auth.js";

// TODO: Replace the following with your web app's Firebase project configuration
ccoonnsstt config = {
 apiKey: "XX",
 authDomain: "minimalapp-XXXX.firebaseapp.com",
 projectId: "minimalapp-XXXX",
 appId: "1:XXXXXXXXXXXX:web:XXXXXXXXXXXXXXXXXXXXXXX"
};
// Initialize a Firebase App object only if not already initialized
ccoonnsstt aapppp = (!ggeettAAppppss().length) ? initializeApp(config) : ggeettAApppp();
// Initialize Firebase Authentication
ccoonnsstt aauutthh = ggeettAAuutthh((aapppp));
// Initialize Firestore interface
ccoonnsstt fsDb = getFirestore();

eexxppoorrtt { aauutthh, fsDb };

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

83 de 108 23/5/22 18:48

Notice that this time we initialize the Firebase App instance differently, storing it as an object in a variable named "app" and
later being given as a parameter to the getAuth() function to create the authentication instance in the "auth" object.
Contrary to how we initialize Firestore, we cannot initialize Firebase Authentication without using the Firebase App instance
object. For such purpose, we evaluate first whether there is already an initialized Firebase app instance using the
getApps() function, and, if not, initialize it with the initializeApp() function. If there is already an initialized
Firebase app instance, we use the getApp() function to get it and store it in the variable "app".

ccoonnsstt aapppp = (!!ggeettAAppppss(())..lleennggtthh) ? initializeApp(config) : ggeettAApppp(());
...
ccoonnsstt aauutthh = ggeettAAuutthh((aapppp));

5.4. Step 2: Prepare UI for Authentication and Authorization

According to the design of our access control handling solution, once the user is authenticated, the proposed implementation
deals mainly with two issues on the user interface:

1. one for handling the main menu, granting and restricting access to pages of the four CRUD data management use cases,

2. and another for handling how to sign up, sign in, and sign out the app.

5.4.1 Prepare the Main Menu for Granting or Restricting Access

The menu items (links and buttons) on the start page may have any of the following three states:

1. Disabled, for menu items to access change/write operations if the user status is anonymous.

2. Enabled, for menu items to access either

!"change/write/read operations if a logged-in user is registered with a verified email,

!"or read operations if a user is anonymous.

3. Enabled but unavailabe, for menu items to access change/write operations if the user is registered with non-verified
email. The menu item is enabled, but a redirection back to the start page is triggered after clicking on it.

For setting up the default state of the menu items we perform different DOM operations on UI elements. For instance, the
<a> elements are disabled using CSS rules, using the "disabled" class, and the <button> elements are disabled adding
the disabled attribute. The whole setup can be seen on the resulting in this HTML code:

<<uull role="menubar">>
<<llii role="menuitem">>
<<aa href="createBook.html" ccllaassss==""ddiissaabblleedd"">Create<<//aa>> a new book record

<<//llii>>
<<llii role="menuitem">>
<<aa href="rreettrriieevveeAAnnddLLiissttAAllllBBooookkss..hhttmmll">Retrieve<<//aa>> and list all book records

<<//llii>>
<<llii role="menuitem">>
<<aa href="updateBook.html" ccllaassss==""ddiissaabblleedd"">Update<<//aa>> a book record

<<//llii>>
<<llii role="menuitem">>
<<aa href="deleteBook.html" ccllaassss==""ddiissaabblleedd"">Delete<<//aa>> a book record

<<//llii>>
<<llii role="menuitem">>

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

84 de 108 23/5/22 18:48

<<bbuuttttoonn class="generateTestData" type="button" ddiissaabblleedd==""ddiissaabblleedd"">Generate test data<<//bbuuttttoonn>>
<<//llii>>
<<llii role="menuitem">>
<<bbuuttttoonn id="clearData" type="button" ddiissaabblleedd==""ddiissaabblleedd"">Clear test data<<//bbuuttttoonn>>

<<//llii>>
<<//uull>>

Notice that the only "non-disabled" menu item by default is "Retrieve and list all book records" since we want
to allow unlimited access to the only read operation, whether the user status is anonymous or not.

We also use CSS rules: the "disabled" class, removes click events from the <a> elements using the property pointer-
events set to none and changes their appearance by reducing its opacity and setting the cursor to default, which
removes the "hand" icon when hovering "clickable" UI elements:

a.disabled {
ooppaacciittyy: 0.4;
ppooiinntteerr--eevveennttss: none;
ccuurrssoorr: default;

}

5.4.2 Login Management Area

The main UI element that accompanies the four pages of the CRUD use cases in our app is a login management area that
adapts its behavior and appearance according to changes in the user authentication status. This area, located in the header
section of each page, gives access to links and buttons that allow users to sign up (page signUp.html), sign in (page
signIn.html), and sign out. User messages are also shown in this area, sometimes inviting to do something, others
providing information about the current authentication status.

<<hheeaaddeerr>>
<<ddiivv id="llooggiinn--mmaannaaggeemmeenntt"><<//ddiivv>>
<<hh11>>Minimal App with Authentication — Public Library<<//hh11>>

<<//hheeaaddeerr>>

5.4.3 Error Messages from Firebase Authentication

Error messages are meant to provide feedback to users about what they did wrong and how to fix mistakes. The design of
our access control handling solution relies very much on user interaction elements. Since many things may go wrong while
interacting with such forms, buttons, verification emails/links, etc., we need to handle error messages returned from our
Firebase Authentication instance accordingly. To show error messages, every page view related to our access control
handling solution includes a div element exclusively for displaying error messages.

<<hheeaaddeerr>>
<<ddiivv iidd==""mmeessssaaggee"" hhiiddddeenn==""hhiiddddeenn"">><<//ddiivv>>
<<hh11>>...<<//hh11>>

 ...
<<//hheeaaddeerr>>

5.5. Step 3: Implement the Access Control Handling Solution

Our implementation of the access control handling solution resides in the view code file js/v/accessControl.mjs, and
it is divided in the following five procedures:

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

85 de 108 23/5/22 18:48

1. hhaannddlleeAAuutthheennttiiccaattiioonn(()) handles Firebase Authentication SDK functionalities to identify the user authentication
status and invoke the correct authorization via the handleAuthorization() procedure.

2. hhaannddlleeAAuutthhoorriizzaattiioonn(()) handles the authorization policies to correctly grant/restrict access to the four CRUD use
cases by DOM operations on the UI via the createSignInAndSignUpUI() and createSignOutUI() helper
functions.

3. ccrreeaatteeSSiiggnnIInnAAnnddSSiiggnnUUppUUII(()) renders the UI elements and interactivity for accessing the sign-up and sign-in pages.

4. ccrreeaatteeSSiiggnnOOuuttUUII(()) renders the UI elements and interactivity for signing out the app.

5. hhaannddlleeSSiiggnnOOuutt(()) handles the end of the user session in the app.

The first step is importing the auth instance object from the Firebase initialization file initFirebase.mjs, and required
functions from the Firebase Authentication SDK library.

iimmppoorrtt { auth } from "../initialize.mjs";
iimmppoorrtt { onAuthStateChanged, signInAnonymously, signOut } from "https://www.gstatic.com/firebasejs/9.X.X/fi

5.5.1 Handle Authentication

In the handleAuthentication() procedure resides the logic that encompasses the authentication capabilities of the
Firebase Authentication SDK library with the access control policies to authorize access to the CRUD use case pages. For
handling authentication we evaluate the different user authentication statuses for invoking accordingly the
handleAuthorization() procedure, which grants and restricts access to the CRUD use case pages.

It starts by evaluating the user authentication status using the onAuthStateChanged() function, which returns a user
instance object examined by its isAnonymous property. We know if the user is signed in as anonymous or registered
throughout this property. However, if the user instance object returns null, there is no active user session, and we use the
signInAnonymously() method to upgrade the user from visitor to anonymous, signing in an anonymous user session in
the app.

For each evaluated user authentication status we invoke the handleAuthorization() procedure with different
parameters for handling authorization. The first parameter is a string value that describes the user authentication status.

ffuunnccttiioonn hhaannddlleeAAuutthheennttiiccaattiioonn(()) {
// get current page value
ccoonnsstt ccuurrrreennttPPaaggee = window.llooccaattiioonn..ppaatthhnnaammee;
ttrryy {
// evaluate user authentication status
oonnAAuutthhSSttaatteeCChhaannggeedd(auth, async ffuunnccttiioonn (user) {
// if status is "anonymous" or "registered"
iiff (user) {
iiff (user.iissAAnnoonnyymmoouuss) { // if user is "anonymous"
hhaannddlleeAAuutthhoorriizzaattiioonn("Anonymous", currentPage);

 } eellssee { // if status is "registered"
iiff (!user.emailVerified) { // if email address is not verified
hhaannddlleeAAuutthhoorriizzaattiioonn("Registered with non-verified email", currentPage, user.email);

 } eellssee { // if email address is verified
hhaannddlleeAAuutthhoorriizzaattiioonn("Registered with verified email", currentPage, user.email);

 }
 }
 }

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

86 de 108 23/5/22 18:48

eellssee ssiiggnnIInnAAnnoonnyymmoouussllyy(auth); // otherwise, upgrade to "anonymous"
 });
 } ccaattcchh (e) {
 console.error(`EErrrroorr wwiitthh user authentication: ${e}`);
 }
}

The second parameter used with the handleAuthentication() procedure is the "current page" in which the user is
located, using the location interface and its property pathname,

ccoonnsstt currentPage = window.location.pathname;

and the third -and optional– parameter is the user's email address, get from using the email property on the user instance
object.
5.5.2 Handle authorization

The handleAuthorization() procedure coordinates every UI behaviour orchestrating DOM operations either in the
login management area or main menu items, using a switch/case statement based on the three possible passed user
authentication statuses. We present the basic structure of this procedure:

ffuunnccttiioonn hhaannddlleeAAuutthhoorriizzaattiioonn(uusseerrSSttaattuuss, currentPage, email) {
 ...
sswwiittcchh (uusseerrSSttaattuuss) {
ccaassee "Anonymous":

 ...
ccaassee "Registered with non-verified email":

 ...
ccaassee "Registered with verified email":

 ...
 }
}

Before handling any possible case of user authentication status, we declare variables for accessing the login management
area, a list of "authorized pages" that anonymous users can access without authentication, and another list containing the
two forms of how the property pathname of the location interface recognizes the "start page". Notice that the
authorizedPages variable concatenates both lists:

ffuunnccttiioonn handleAuthorization(userStatus, currentPage, email) {
// declare variables for current page and for accessing UI elements
ccoonnsstt ddiivvLLooggiinnMMggmmttEEll = document.getElementById("login-management"),
ssttaarrttPPaaggee = ["/","/index.html"],

 aauutthhoorriizzeeddPPaaggeess = startPage.concat(["/retrieveAndListAllBooks.html", "/credits.html"]);
sswwiittcchh (userStatus) {

 ...

If case is "Anonymous"

First, we check if the current page is in the list of authorized pages, and if not, the user is redirected to the sign-up page
(signUp.html), or else we show in the login management area the links to the signUp.html and signIn.html pages,
using the createSignInAndSignUpUI() helper function:

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

87 de 108 23/5/22 18:48

...
ccaassee "AAnnoonnyymmoouuss":
// if user is not authorized to current page, restrict access & redirect to sign up page
iiff (!aauutthhoorriizzeeddPPaaggeess..iinncclluuddeess(ccuurrrreennttPPaaggee)) window.location.pathname = "/signUp.html";
eellssee divLoginMgmtEl.appendChild(ccrreeaatteeSSiiggnnIInnAAnnddSSiiggnnUUppUUII());

 console.log(`Authenticated as "${userStatus}"`);
bbrreeaakk;

...

If case is "Registered with non-verified email"

First, we check if the current page is in the list of authorized pages, and if not, the user is redirected to the start page
(index.html), or else we invoke the createSignOutUI() helper function that creates a "Sign out" button element in the
login management area. This time two parameters are passed to the function, the user's email address and a boolean that, if
present with the value true, renders a message inviting the user to verify the registered email address:

...
ccaassee "RReeggiisstteerreedd wwiitthh nnoonn--vveerriiffiieedd eemmaaiill":
// if user is not authorized to current page, restrict access & redirect to start page
iiff (!aauutthhoorriizzeeddPPaaggeess..iinncclluuddeess(ccuurrrreennttPPaaggee)) window.location.pathname = "/index.html";
eellssee divLoginMgmtEl.appendChild(ccrreeaatteeSSiiggnnOOuuttUUII(email, true));

 console.log(`Authenticated as "${userStatus}" (${eemmaaiill})`);
bbrreeaakk;

...

If case is "Registered with verified email"

First, we declare variables for accessing UI elements on the main menu located on the start page (index.html). After
checking if we are located on it, we enable links by removing the CSS class "disabled" and buttons by setting to false the
"disabled" attribute, authorizing as a result full access to create/write operations in the pages of the four database access
operations. Then we invoke the createSignOutUI() helper function that creates a "Sign out" button element in the login
management area. This time only one parameter is passed to the function, the user's email address:

...
ccaassee "RReeggiisstteerreedd wwiitthh vveerriiffiieedd eemmaaiill":
// if current page is start page grant access to the four database operations
iiff (ssttaarrttPPaaggee..iinncclluuddeess(ccuurrrreennttPPaaggee)) {
// declare variables for accessing UI elements
ccoonnsstt cclleeaarrDDaattaaBBttnn = document.getElementById("clearData"),
ggeenneerraatteeDDaattaaBBttnnss = document.querySelectorAll(".generateTestData"),
ddiissaabblleeddEEllss = document.querySelectorAll(".disabled");

// perform DOM operations to enable menu items
ffoorr (ccoonnsstt el of disabledEls) el.classList.remove("ddiissaabblleedd");

 clearDataBtn.ddiissaabblleedd = false;
ffoorr (ccoonnsstt btn of generateDataBtns) btn.disabled = false;

 }
 divLoginMgmtEl.appendChild(ccrreeaatteeSSiiggnnOOuuttUUII(eemmaaiill));
 console.log(`Authenticated as "${userStatus}" (${email})`);
bbrreeaakk;

...

5.5.3 Helper Functions for Rendering the UI

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

88 de 108 23/5/22 18:48

The two functions in charge of manipulating UI elements related to authentication and authorization are
createSignInAndSignUpUI() and createSignOutUI().

Notice the use of the JavaScript method createDocumentFragment(), that creates a DOM node object separated from
the main DOM tree, over which we perform DOM operations without affecting it, being consequently more computationally
efficient. When the fragment is appended to the main DOM tree, it disappears in just one operation:

ffuunnccttiioonn ccrreeaatteeSSiiggnnIInnAAnnddSSiiggnnUUppUUII() {
ccoonnsstt fragment = document.ccrreeaatteeDDooccuummeennttFFrraaggmmeenntt(),

 linkSignUpEl = document.createElement("a"),
 linkSignInEl = document.createElement("a"),
 text = document.createTextNode(" o ");
 linkSignUpEl.href = "signUp.html";
 linkSignInEl.href = "signIn.html";
 linkSignUpEl.textContent = "Sign up";
 linkSignInEl.textContent = "Sign in";
 fragment.appendChild(linkSignUpEl);
 fragment.appendChild(text);
 fragment.appendChild(linkSignInEl);
rreettuurrnn fragment;

}

The createSignOutUI() helper function receives two parameters, one is the user's email address as string, and an
optional boolean that, if true, it renders a message inviting the user to verify the registered email address. Notice the event
listener added to the button that invokes the handleSignOut() function while the DOM operations happen:

ffuunnccttiioonn ccrreeaatteeSSiiggnnOOuuttUUII(eemmaaiill, iinnvviittaattiioonn) {
ccoonnsstt fragment = document.createDocumentFragment(),

 divEl = document.createElement("div"),
 buttonEl = document.createElement("button");
iiff (iinnvviittaattiioonn) {
ccoonnsstt divEl = document.createElement("div");

 divEl.textContent = "Check your email for instructions to verify your account " +
"and authorize access to operations";

 fragment.appendChild(divEl);
 }
 buttonEl.type = "button";
 buttonEl.innerText = "Sign Out";
bbuuttttoonnEEll..aaddddEEvveennttLLiisstteenneerr("click", hhaannddlleeSSiiggnnOOuutt);

 divEl.innerText = `${eemmaaiill} `;
 divEl.appendChild(buttonEl);
 fragment.appendChild(divEl);
rreettuurrnn fragment;

}

5.5.4 The Sign out Procedure

This procedure is part of the user authentication status handler, and it ends the user session with the Firebase Authentication
SDK signOut() function, redirecting afterwards the user to the start page.

async ffuunnccttiioonn hhaannddlleeSSiiggnnOOuutt() {
ttrryy {

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

89 de 108 23/5/22 18:48

ssiiggnnOOuutt(auth);
 window.location.pathname = "/index.html";
 } ccaattcchh (e) {
 console.error(`${e.constructor.name}: ${e.message}`);
 }
}

5.6. Step 4: Implement Sign up and Sign in

The user interfaces for either signing up or signing in the app reside respectively in the HTML pages signUp.html and
signIn.html. They have allocated a similar number of interactive elements, such as 1) a <form> element, 2) two
<input> to capture accordingly "email" and "password" with type attributes email and password, and 3) and a
<button> element that invokes its corresponding authentication procedure. We present the HTML form located in the file
signUp.html:

<<hheeaadd>>
 ...
<<ssccrriipptt ttyyppee==""mmoodduullee"" src="js/v/ssiiggnnUUpp..mmjjss" ><<//ssccrriipptt>>

 ...
<<//hheeaadd>>
<<bbooddyy>>
 ...
<<ffoorrmm id="Auth">
<<ddiivv>>
<<llaabbeell>>Email: <<iinnppuutt name="email" type="eemmaaiill"/><<//llaabbeell>>

<<//ddiivv>>
<<ddiivv>>
<<llaabbeell>>Password: <<iinnppuutt name="password" type="ppaasssswwoorrdd" placeholder="6+ characters"/>

<<//ddiivv>>
<<ddiivv>>
<<bbuuttttoonn type="button" name="ssiiggnnUUpp">Sign up<<//bbuuttttoonn>>

<<//ddiivv>>
<<//ffoorrmm>>

 ...
<<//bbooddyy>>

However, in the user interface for signing in the app located in the HTML file signIn.html you may see an additional
element, a link labelled as "Forgot password?" to the HTML file resetPassword.html, offering the choice to reset the
password in case the user forgot it. In the next step, we will discuss this issue in details.

<<hheeaadd>>
 ...
<<ssccrriipptt ttyyppee==""mmoodduullee"" src="js/v/ssiiggnnIInn..mmjjss" ><<//ssccrriipptt>>

 ...
<<//hheeaadd>>
<<bbooddyy>>
 ...
<<ffoorrmm id="Auth">>
<<ddiivv>>
<<llaabbeell>>Email: <<iinnppuutt name="email" type="email"//>><<//llaabbeell>>

<<//ddiivv>>
<<ddiivv>>

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

90 de 108 23/5/22 18:48

<<llaabbeell>>Password: <<iinnppuutt name="password" type="password"//>><<//llaabbeell>>
<<//ddiivv>>
<<ddiivv>>
<<bbuuttttoonn type="button" name="signIn">>Sign in<<//bbuuttttoonn>>

<<//ddiivv>>
<<//ffoorrmm>>
<<pp>>

 Or <<aa href="signUp.html" title="Sign in">>sign up<<//aa>> to create your account.
<<//pp>>
<<pp>><<aa hhrreeff==""rreesseettPPaasssswwoorrdd..hhttmmll"" ttiittllee==""RReesseett ppaasssswwoorrdd"">>FFoorrggoott ppaasssswwoorrdd??<<//aa>><<//pp>>

 ...
<<//bbooddyy>>

Both signUp.html and signIn.html invoke, respectively, view code from the ES6 modules signUp.mjs and
signIn.mjs to add authentication behaviour to the user interface.

5.6.1 Sign up View Code

In simple, the sign-up view code upgrades an anonymous user to registered, using the email and password passed from the
HTML form, in four steps:

1. We generate an authentication credential object using the createUserWithEmailAndPassword() method, providing
it as parameters the Firebase Athentication interface object auth, and the entered email and password.

2. We create a user reference in our project's instance of Firebase Authentication using the user method of the
authentication credential object.

3. At this point, the user account has been created in our project's instance of Firebase Authentication, being the current
status of the user registered with non-verified email. However, to complete the sign up process, we send a verification
email that contains a link including a unique activation code. The verification email is generated and sent from our
Firebase's project instance, using the sendEmailVerification() method and the user reference described in step 2.

4. We display an alert dialog with a reminder message encouraging us to verify the provided email to complete the sign up
process.

Notice that we do all this in a try/catch block, and if Firebase Authentication API returns an error message, we "catch it"
and display it accordingly on the div element created for such purpose.

iimmppoorrtt { aauutthh } from "../initFirebase.mjs";
iimmppoorrtt { ccrreeaatteeUUsseerrWWiitthhEEmmaaiillAAnnddPPaasssswwoorrdd, sseennddEEmmaaiillVVeerriiffiiccaattiioonn } from "https://www.gstatic.com/firebasejs/9

ccoonnsstt formEl = document.forms["Auth"],
 signUpBtn = formEl["signUp"];

// manage sign up event
signUpBtn.addEventListener("click", async ffuunnccttiioonn () {
ccoonnsstt eemmaaiill = formEl["email"].value,
ppaasssswwoorrdd = formEl["password"].value;

iiff (email && password) {
ttrryy {
// create account and get credential by providing email and password
// user is signed in automatically if the account is created successfully

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

91 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler
https://js-firebase-tutorials.netlify.app/minimal/index.html#MinimalAC-Step5-ImplementActionHandler

ccoonnsstt userCredential = await ccrreeaatteeUUsseerrWWiitthhEEmmaaiillAAnnddPPaasssswwoorrdd(aauutthh, eemmaaiill, ppaasssswwoorrdd);
// get user reference from Firebase
ccoonnsstt userRef = userCredential.uusseerr;
// send verification email

 await sseennddEEmmaaiillVVeerriiffiiccaattiioonn(userRef);
 console.log (`User ${email} became "Registered"`);

aalleerrtt (`Account created ${email}. Check your email ffoorr instructions to verify tthhiiss account.`);
 window.location.pathname = "/index.html"; // redirect user to start page
 } ccaattcchh (e) {

ccoonnsstt divMsgEl = document.getElementById(""mmeessssaaggee"");
 divMsgEl.textContent = e.message;
 divMsgEl.hidden = false;
 }
 }
});

5.6.2 Sign in View Code

This procedure uses the signInWithEmailAndPassword() method to sign in to the app with email and password. If the
sign-in process is successful, the user is redirected to the start page. Likewise, the sign-up process error messages are
handled accordingly in this view code:

iimmppoorrtt { aauutthh } from "../initFirebase.mjs";
iimmppoorrtt { ssiiggnnIInnWWiitthhEEmmaaiillAAnnddPPaasssswwoorrdd } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-auth.js"

ccoonnsstt formEl = document.forms["Auth"],
 signInBtn = formEl["signIn"];

signInBtn.addEventListener("click", async ffuunnccttiioonn () {
ccoonnsstt email = formEl["email"].value,

 password = formEl["password"].value;
iiff (email && password) {
ttrryy {
// sign in user using email + password

 await ssiiggnnIInnWWiitthhEEmmaaiillAAnnddPPaasssswwoorrdd(aauutthh, eemmaaiill, ppaasssswwoorrdd);
wwiinnddooww..llooccaattiioonn..ppaatthhnnaammee == ""//iinnddeexx..hhttmmll""; // redirect user to start page

 } ccaattcchh (e) {
ccoonnsstt divMsgEl = document.getElementById("message");

 divMsgEl.textContent = e.message;
 divMsgEl.hidden = false;
 }
 }
});

5.7. Step 5: Implement User Authentication Action Handlers

Both user authentication procedures, sign-up and sign-in, reviewed in the previous step, involve a confirmation email sent
to the user for completing

1. email address verification, when signing up the app, and

2. password reset, if the user forgot it, at the moment of signing to in the app.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

92 de 108 23/5/22 18:48

The confirmation emails contain a unique and self-generated link that recipients open to handle and complete the user
management action on another web page, called now email action handler page.

By default, Firebase hosts generic templates for user authentication action handlers, but we choose to create our pages for
custom email action handler and confirmation email. Firebase also uses user authentication action handlers to change the
accounts' primary email addresses, but we won't cover such because it is pretty similar to the others covered in this tutorial.

5.7.1 Email Action Handler Templates

Go to the Firebase Console and click on the "Authentication" option in the main menu. Select the tab "Templates" and

1. edit the fields that have been filled out automatically by Firebase, such as Sender name, From, Reply to, and Subject,
with the content of your choice. Notice that Firebase prevents customizing the field Message to evade abusive behaviour,
such as spam; if you want to customize the email message, you need to handle the flow outside Firebase cloud services.
In this same screen, you can make individual changes in the templates for "Email address verification" and "Password
reset", and afterwards,

2. being on edit mode in any template, click on "Customize action URL", below the "Action URL" field, and refactor the
URL by replacing the ending part "__/auth/action" with the file name of the action handler page, resulting into
something similar to "https://xxxxx.firebaseapp.com/actionHandler.html". Notice that the Action URL
value is shared across all templates, so if you change it in one action handler/template, the same value is updated in all
the other action handlers/templates.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

93 de 108 23/5/22 18:48

Figure 5-2. Email action handler templates

5.7.2 Email Action Handler Page

The email action handler page is common for each user management action handler, so we create an HTML file named
actionHandler.html, and within we allocate a <section> element for each planned action; the first <section>
element deals with email address verification, and the second with password reset. Both <section> elements are hidden by
default, and contain a basic structure that defines the page's layout, and after being filled out with content by the view code it
is "unhidden". Notice that the heading element <h1> is also present empty and "hidden" by default:

<<hheeaaddeerr>>
<<ddiivv id="message" hidden="hidden">><<//ddiivv>>
<<ddiivv>>
<<ddiivv>><<hh11>><<//hh11>><<//ddiivv>>

<<//ddiivv>>
<<//hheeaaddeerr>>
<<mmaaiinn>>
<<ddiivv>>
<<sseeccttiioonn hhiiddddeenn==""hhiiddddeenn"">>
<<pp>><<//pp>>

<<//sseeccttiioonn>>
<<sseeccttiioonn hhiiddddeenn==""hhiiddddeenn"">>
<<pp>><<//pp>>

 ...
<<//sseeccttiioonn>>

<<//ddiivv>>
<<//mmaaiinn>>

When Firebase generates the link attached in the confirmation email to complete the action, several query parameters are
added to the action handler URL, so the first step is parsing from the URL the two parameters needed to complete the user
authentication actions: 1) "mode" (stored in a variable mode), and 2) "oobCode" (stored in the variable actionCode).
Notice that the oobCode has a self generated unique code, invalidated by Firebase once it is used.

The following is an example of an action handler URL with parameters generated by Firebase and attached to confirmation
emails:

https://xxxxx.firebaseapp.com/actionHandler.html?mmooddee=verifyEmail&oooobbCCooddee=sxMPvK72F3gNuEd4E1xkNiWaCZ6aQgP6G

Notice the optional query parameters present in the action handler URL, such as apiKey and lang, included for convenience
if you need your Firebase project's API Key and/or plan to provide localized email action handler pages.

In the view code module file actionHandler.mjs we initialize individual variables for accessing each section in the page,
sectionVeriEmailEl and sectionRstPswEl, the first section element for the action handler for email address
verification, and the second for the action handler for password reset.

To handle the required actions we use a switch/case statement using the "mode" variable value, to invoke either the
procedures handleVerifyEmail() or handleResetPassword() with the section element and the unique action code
as parameters:

ccoonnsstt mmooddee = ggeettPPaarraammeetteerrBByyNNaammee("mode");
ccoonnsstt aaccttiioonnCCooddee = ggeettPPaarraammeetteerrBByyNNaammee("oobCode");

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

94 de 108 23/5/22 18:48

ccoonnsstt [sseeccttiioonnVVeerriiEEmmaaiillEEll, sseeccttiioonnRRssttPPsswwEEll]
 = document.querySelectorAll("main>div>section");

sswwiittcchh (mmooddee) {
ccaassee "vveerriiffyyEEmmaaiill":

 sectionVeriEmailEl.hidden = false;
 await hhaannddlleeVVeerriiffyyEEmmaaiill(sseeccttiioonnVVeerriiEEmmaaiillEEll, aaccttiioonnCCooddee);

bbrreeaakk;
ccaassee "resetPassword":

 sectionRstPswEl.hidden = false;
 await hhaannddlleeRReesseettPPaasssswwoorrdd(sseeccttiioonnRRssttPPsswwEEll, aaccttiioonnCCooddee);

bbrreeaakk;
}

For getting parameter values from the URL we use the getParameterByName() function.

ffuunnccttiioonn ggeettPPaarraammeetteerrBByyNNaammee(parameter) {
ccoonnsstt urlParams = nneeww URLSearchParams(location.search);
rreettuurrnn urlParams.get(parameter);

}

5.7.3 Verify Email Address

The view code for handling email address verification is centralized in the handleVerifyEmail() procedure within
the actionHandler.html file. We start by declaring variables for accessing the heading element h1 and the p element
(h1El and pEL), in which we add text content to communicate the result of this action handler. Later, in a try/catch
statement we use the actionCode variable value to verify if the action code is valid using the
verifyPasswordResetCode() function. Although this Firebase Authentication SDK's function is not documented for
use beyond validating action codes for password resetting, its use is safe in this context. Afterwards, ensuring the action
code is valid, we use the applyActionCode() function with confidence. The remaining code deals with DOM operations
for embedding text in the web page ,whether the email address verification is successful or failed. Notice that if the
verification process fails, the error message coming from our Firebase Authentication instance is displayed in the div
element reserved for handling user messages.

async ffuunnccttiioonn hhaannddlleeVVeerriiffyyEEmmaaiill(sectionVeriEmailEl, aaccttiioonnCCooddee) {
ccoonnsstt hh11EEll = document.querySelector("h1"),
ppEEll = sectionVeriEmailEl.querySelector("p");

 let email = null;
ttrryy {

 email = await vveerriiffyyPPaasssswwoorrddRReesseettCCooddee(auth, aaccttiioonnCCooddee);
 await aappppllyyAAccttiioonnCCooddee(auth, aaccttiioonnCCooddee);

hh11EEll.textContent = "Your email address has been verified";
ccoonnsstt bEl = document.createElement("b");
bbEEll.textContent = email;
ppEEll.innerText = "Now this account can use any data management operation: ";

 pEl.appendChild(bEl);
 } ccaattcchh (e) {

hh11EEll.textContent = "Invalid or expired link.";
ppEEll.textContent = "Your email address has not been verified.";
ccoonnsstt ddiivvMMssggEEll = document.getElementById("message");
ddiivvMMssggEEll.textContent = e.message;
ddiivvMMssggEEll.hidden = false;

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

95 de 108 23/5/22 18:48

 }
}

5.7.4 Reset Password

The flow for password reset starts when the user intentionally clicks on the link "Forgot password?" located in the Sign-in
page signUp.html, which leads to the forgotPassword.html page. This web page has a <form> element containing
an <input> field in which the user enters an email address to the confirmation email is being sent. Finally, a <button>
element is in charge of submitting the form content to the view code.

<<hheeaaddeerr>>
<<ddiivv id="message" hidden="hidden">><<//ddiivv>>
<<hh11>>Reset your password<<//hh11>>
<<pp>>

 Have you forgotten your password? No problem! Just enter your email address and click on the button bel
<<//pp>>

<<//hheeaaddeerr>>
<<mmaaiinn>>
<<ffoorrmm id="Password">>
<<ddiivv>>
<<llaabbeell>>Email: <<iinnppuutt name="email" type="email"/><<//llaabbeell>>

<<//ddiivv>>
<<ddiivv>>
<<bbuuttttoonn name="commit" type="button">Reset your password<<//bbuuttttoonn>>

<<//ddiivv>>
<<//ffoorrmm>>
<<//mmaaiinn>>

The view code in the passwordReset.mjs ES6 module initialize variables for accessing UI elements, such as the form
and button elements. An event listener is attached to the button, and whenever the user clicks on it, a confirmation email is
being sent to the user using the sendPasswordResetEmail() function using the entered email address as parameter.
Finally, an alert is showed instructing the user to check their email in order to create the new password; and the user is
redirected to the start page:

iimmppoorrtt { auth } from "../initFirebase.mjs";
iimmppoorrtt { sseennddPPaasssswwoorrddRReesseettEEmmaaiill } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-auth.js"

ccoonnsstt formEl = document.forms["Password"],
 resetBtn = formEl["commit"];

resetBtn.addEventListener("click", async ffuunnccttiioonn () {
ccoonnsstt email = formEl["email"].value;
iiff (email) {
ttrryy {

 await sseennddPPaasssswwoorrddRReesseettEEmmaaiill(auth, email);
 alert(`Check your email "${email} and confirm this request to create a new password.`);
 window.location.pathname = "/index.html";
 } ccaattcchh (e) {

ccoonnsstt divMsgEl = document.getElementById("message");
 divMsgEl.textContent = e.message;
 divMsgEl.hidden = false;
 }

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

96 de 108 23/5/22 18:48

 }
});

As well as for the email address verification action, once the user clicks on the attached link, the action handler URL leads
the user to the email action handler page actionHandler.html. Its corresponding view code is located in the
actionHandler.mjs file, whereby evaluates the action handler URL parameter "mode" and, if its value is
"resetPassword" then "unhides" the corresponding section element and invokes the handleResetPassword()
procedure with the value of action code as parameter:

sswwiittcchh (mmooddee) {
ccaassee "vveerriiffyyEEmmaaiill":

 ...
ccaassee "rreesseettPPaasssswwoorrdd":
sseeccttiioonnRRssttPPsswwEEll..hhiiddddeenn = false;

 await hhaannddlleeRReesseettPPaasssswwoorrdd(sseeccttiioonnRRssttPPsswwEEll, aaccttiioonnCCooddee);
bbrreeaakk;

}

On the action handler page actionHandler.html, the second <section> element contains an <input> element where the
new password can be entered:

<<mmaaiinn>>
<<sseeccttiioonn hidden="hidden">>

 ...
<<//sseeccttiioonn>>
<<sseeccttiioonn hhiiddddeenn==""hhiiddddeenn"">>
<<pp>><<//pp>>
<<ffoorrmm id="Password">>
<<ddiivv>>
<<llaabbeell>>NNeeww ppaasssswwoorrdd:: <<iinnppuutt nnaammee==""ppaasssswwoorrdd"" ttyyppee==""ppaasssswwoorrdd""//>><<//llaabbeell>>

<<//ddiivv>>
<<ddiivv>>
<<bbuuttttoonn type="button" name="commit">>Save<<//bbuuttttoonn>>

<<//ddiivv>>
<<//ffoorrmm>>

<<//sseeccttiioonn>>
 ...
<<//mmaaiinn>>

The handleResetPassword() procedure is very similar to the previously described handleVerifyEmail(), but
additionally, after verifying the email address is valid, the Firebase Authentication SDK's function
confirmPasswordReset() resets the new password using the action code. Finally, using the email address and reset
password, the user is signed in automatically and unnoticed using the signInWithEmailAndPassword() function.

async ffuunnccttiioonn hhaannddlleeRReesseettPPaasssswwoorrdd(sectionRstPswEl, actionCode) {
ccoonnsstt h1El = document.querySelector("h1"),

 pEl = sectionRstPswEl.querySelector("p"),
 formEl = document.forms["Password"];
ttrryy {
ccoonnsstt eemmaaiill = await vveerriiffyyPPaasssswwoorrddRReesseettCCooddee(auth, actionCode);

 h1El.textContent = "Reset password";

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

97 de 108 23/5/22 18:48

ccoonnsstt bEl = document.createElement("b");
 bEl.textContent = email;
 pEl.innerText = "For: ";
 pEl.appendChild(bEl);

ccoonnsstt saveButton = formEl["commit"];
 saveButton.addEventListener("click", async ffuunnccttiioonn () {

ccoonnsstt nneewwPPaasssswwoorrdd = formEl["password"].value;
iiff (newPassword) {

 await ccoonnffiirrmmPPaasssswwoorrddRReesseett(auth, aaccttiioonnCCooddee, nneewwPPaasssswwoorrdd);
 alert(`Your password has been update! You will be automatically signed iinn wwiitthh your email address
 await ssiiggnnIInnWWiitthhEEmmaaiillAAnnddPPaasssswwoorrdd(auth, eemmaaiill, nneewwPPaasssswwoorrdd);
 window.location.pathname = "/index.html"; // redirect user to start page
 }
 });
 } ccaattcchh (e) {
 formEl.hidden = true;
 h1El.textContent = "Invalid or expired link.";
 pEl.textContent = "Your password cannot be reset.";

ccoonnsstt divMsgEl = document.getElementById("message");
 divMsgEl.textContent = e.message;
 divMsgEl.hidden = false;
 }
}

5.8. Step 6: Configure Security Rules

Although our access control handling solution for the minimal app manages authorization on the user interface, we also need
to restrict the direct access to our Firestore database instance to protect it against any direct query. The following Firestore
Security Rules also have been created following the authorization policies reviewed previously for the four CRUD use
cases.

In the following Firestore Security Rules we are allowing to change/write only if the user authentication status is
"Registered with verified email", and to read if the user authentication status is either "Anonymous" or "Registered with
non-verified email", so those users are authorized to Retrieve records/documents.

rules_version = '2';
service cloud.firestore {
 match /databases/{database}/documents {
 match //bbooookkss//{{ddooccIIDD}} {
 allow wwrriittee: iiff request.aauutthh..ttookkeenn..eemmaaiill__vveerriiffiieedd ==== ttrruuee;
 allow rreeaadd: iiff request.aauutthh !!== nnuullll;
 }
 }
}

match /books/{docID} is a wildcard to define the scope of the rule to every document in the table/collection "book".

As we said before, for updating the Firestore Security Rules for our Cloud Firestore database instance, we advise you to use
the file firestore.rules, and then deploy the whole project with "firebase deploy". The deployment of a new
version of security rules overwrites the previous rules located on the cloud. Notice that "firebase deploy" overwrites
any editing made over the security rules on the Firebase Console.

5.9. Points of Attention

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

98 de 108 23/5/22 18:48

5.9.1 Use of FirebaseUI and Firebase UI Auth

Described as a set of open-source UI libraries for Firebase, FirebaseUI is built over the Firebase SDK libraries and provides
a simple way to connect UI components to Firebase databases, allowing frontend views to update in real-time as data
changes on the backend. On the other hand, FirebaseUI Auth, built over of the Firebase Authentication SDK library,
provides complete "drop-in" authentication patterns for mobile apps and websites that allow developers to customize easily
(usually) complex UI workflows for different sign in and sign up methods, such as email and password, phone numbers, and
the most popular federated identity providers like Google, Facebook, Twitter, GitHub, Apple, Microsoft, Yahoo, and others
under industry standards like OAuth 2.0 and OpenID Connect.

5.9.2 Separating model and view in our access control handling solution

Although access control components (user accounts, roles, credentials, policies, etc.) should be defined on the model layer of
an app, we have chosen to keep it on the view layer for simplicity. However, separating view code from model code in our
access control handling solution is totally possible. For instance, Firebase Authentication allows to manage user accounts on
the cloud, and it is feasible to add a "user" model class to instantiate "user" objects.

5.9.3 Extending to a role-based access control

Authentication can be extended with role based

5.9.4 Adding action handler for changing the accounts' primary email

Firebase also uses user authentication action handlers for changing the accounts' primary email, but we won't cover such due
it is quite similar to the others covered in this tutorial.

5.10. Quiz Questions

5.10.1 Question 1: Access Control definition

Chose the correct options in the following statement:

Access Control consists of two components: authentication and authorization. And while ____________ aims to prove user
identity in ____________, ____________ aims to provide correct access data/resources/features to ____________.

☐ Authentication.

☐ Authorization.

☐ An authenticated user.

☐ An authenticated app, device or network.

5.10.2 Question 2: Email Action Handlers

Which of the following statements apply to Email Action Handlers in Firestore? Select two:

☐ The email action handlers provided by Firebase Authentication are email address verification, password reset, and
email address change.

☐ The email action handlers provided by Firebase Authentication are email address verification and password reset.

☐ The templates of email action handlers are good starting points for customizing users' confirmation actions through
emails but are not flexible enough for customizing the whole email message within Firebase infrastructure. This design
responds to the need of evading abusive behavior, therefore full customization may be achieved using your own

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

99 de 108 23/5/22 18:48

https://opensource.google/projects/firebaseui
https://opensource.google/projects/firebaseui
https://firebase.google.com/docs/firestore/client/libraries
https://firebase.google.com/docs/firestore/client/libraries
https://firebase.google.com/docs/auth/android/firebaseui
https://firebase.google.com/docs/auth/android/firebaseui
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/auth
https://oauth.net/2/
https://oauth.net/2/
https://openid.net/connect/
https://openid.net/connect/

infrastructure.

☐ The templates of email action handlers provide complete customization of users' confirmation actions through emails,
with no need for your own infrastructure. This design responds to the capabilities that Firestore provides to prevent
abusive behavior, therefore full customization may be achieved using only Firebase infrastructure.

5.10.3 Question 3: Access Control Handling Solution

According to the Access Control Handling Solution proposed in the tutorial, which features in conjunction grant or restrict
access to the database management operations. Select three:

☐ Firebase Authentication statuses.

☐ DOM operations on the main menu.

☐ Firebase Security Rules.

☐ Email Action Handlers.

☐ Cloud Firestore.

Appendix A. Appendix: "Hello World" Web App with Firebase and Firestore

5.0.1 Step 1. Setup Firebase Services and Assets

Set up a Firebase project, including a new Firebase web app and a Firestore database instance.

5.0.1 Step 2. Create a Record in a Firestore Database

Create a collection named "greetings" and then a few records/documents. Make sure the document has a Document ID (1,
2, 3...), and a field "greeting" (string) filled the value with "Hello World".

You might want to add more records with greetings in different languages.

Figure A-1. Creating a Firestore document for the 'Hello World' App

This small project requires the creation of an HTML document (index.html) and a JS document (scripts.mjs).

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

100 de 108 23/5/22 18:48

https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase
https://js-firebase-tutorials.netlify.app/minimal/index.html#Minimal-Step1-SetupFirebase

5.0.1 Step 3. Define the HTML User Interface

In the <head> section of the HTML file invoke the JavaScript file as a module, and in the <body> section create an empty
unordered list .

<!DOCTYPE html>
<<hhttmmll xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">>
<<hheeaadd>>
<<mmeettaa charset="UTF-8">>
<<ssccrriipptt ttyyppee==""mmoodduullee"" ssrrcc==""ssccrriippttss..mmjjss"">><<//ssccrriipptt>>

<<//hheeaadd>>
<<bbooddyy>>
<<hh11>>Hello World App with Firebase + JS<<//hh11>>
<<uull>><<//uull>>

<<//bbooddyy>>
<<//hhttmmll>>

5.0.1 Step 4. Initialize Firebase and Firestore interfaces

The first statement in the JS file scripts.mjs imports required functions from the core Firebase SDK and Firestore Lite
Web SDK libraries, and from the second statement, your web app is initialized using the Firebase project configuration page.

iimmppoorrtt { iinniittiiaalliizzeeAApppp } from "https://www.gstatic.com/firebasejs/9.X.X/firebase-app.js";
iimmppoorrtt { ggeettFFiirreessttoorree, collection as ffssCCoollll, ggeettDDooccss } from "https://www.gstatic.com/firebasejs/9.X.X/fireb

//// TTOODDOO:: RReeppllaaccee tthhee ffoolllloowwiinngg wwiitthh yyoouurr aapppp''ss FFiirreebbaassee pprroojjeecctt ccoonnffiigguurraattiioonn
// Set firebase App configuration values
ccoonnsstt firebaseConfig = {
 apiKey: "XX",
 authDomain: "minimalapp-XXXX.firebaseapp.com",
 projectId: "minimalapp-XXXX",
 appId: "1:XXXXXXXXXXXX:web:XXXXXXXXXXXXXXXXXXXXXXX"
};
// Initialize Firebase interface
initializeApp(firebaseConfig);
// Initialize Firestore interface
ccoonnsstt db = getFirestore();

5.0.1 Step 5. Add Behavior with JavaScript

Retrieve all greeting records/documents from the Firestore table "greetings", and show their greeting text in the list with the
following procedure:

// retrieve and list all books records/documents
ccoonnsstt ulEl = document.querySelector(""bbooddyy>>uull"");
ccoonnsstt greetingsCollRef = fsColl(db, ""ggrreeeettiinnggss"");
let greetingsQrySn = null;
ttrryy { // get a query snapshot object
 greetingsQrySn = await ggeettDDooccss(greetingsCollRef);
// get the retrieved collection of documents from the snapshot query object
ccoonnsstt greetingDocSns = greetingsQrySn.docs;
// convert Firestore documents to ordinary JS records/objects

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

101 de 108 23/5/22 18:48

https://firebase.google.com/docs/web/learn-more#config-object
https://firebase.google.com/docs/web/learn-more#config-object

ccoonnsstt greetingRecords = greetingDocSns.map(d => d.data());
// create the greetings list items
ffoorr (ccoonnsstt g of greetingRecords) {
ccoonnsstt liEl = document.createElement("li");

 liEl.innerHTML += g.greeting;
 ulEl.appendChild(liEl);
 }
} ccaattcchh(e) {
 console.error(`EErrrroorr when retrieving greetings: ${e}`);
}

5.0.1 Step 5. Run the app

Run on your terminal firebase serve, and on your browser, go to localhost:5000 for getting the list of greetings.

Figure A-2. The "Hello World" Web App App

This first simple example shows the basic elements of a JS+Firebase Web App. In the following sections we go into further
details.

Glossary

C

CRUD

CRUD is an acronym for Create, Read/Retrieve, Update, Delete, which denote the four basic data management
operations to be performed by any software application.

Cascading Style Sheets

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

102 de 108 23/5/22 18:48

CSS is used for defining the presentation style of web pages by telling the browser how to render their HTML (or
XML) contents: using which layout of content elements, which fonts and text styles, which colors, which
backgrounds, and which animations. Normally, these settings are made in a separate CSS file that is associated
with an HTML file via a special link element in the HTML's head element.

Cloud Firestore

Cloud Firestore, or just Firestore, is a NoSQL Database as a Service, schema-free, part of Google Firebase to
develop mobile and web apps.

Collection

In Firestore database a collection is a database table.

D

Document

In Firestore database a document is a database row, or record.

Document ID

In Firestore database a Document ID is a unique record identifier within a database. Typically is the primary key.

Document Object Model

The DOM is an abstract API for retrieving and modifying nodes and elements of HTML or XML documents. All
web programming languages have DOM bindings that realize the DOM.

DocumentSnapshot

In Firestore a DocumentSnapshot contains data read from a document in your database.

Domain Name System

The DNS translates user-friendly domain names to IP addresses that allow to locate a host computer on the
Internet.

E

ECMAScript

A standard for JavaScript defined by the industry organization "Ecma International".

Extensible Markup Language

XML allows to mark up the structure of all kinds of documents, data files and messages in a machine-readable
way. XML may also be human-readable, if the tag names used are self-explaining. XML is based on Unicode.
SVG and MathML are based on XML, and there is an XML-based version of HTML.

XML provides a syntax for expressing structured information in the form of an XML document with elements and
their attributes. The specific elements and attributes used in an XML document can come from any vocabulary,
such as public standards or user-defined XML formats.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

103 de 108 23/5/22 18:48

F

Firebase

Firebase is a cloud platform for software development, provided with a suite of services to create applications
without dealing with the complexity of managing server hardware, code, security and architecture.

Firebase Authentication

It is a user authentication solution for applications developed on Firebase, on both frontend (with UI libraries) and
backend (SDKs). It supports multiple ways to sign in and sign up users, such as passwords, phone numbers,
popular federated identity providers like Google, Facebook and Twitter, and more.

Firebase CLI

The Firebase CLI is a set of tools for managing, viewing, and deploying to Firebase projects.

Firebase Security Rules

Firestore Security rules is a tool that allows developers to manage authorization, giving control for the precise
access we want for our users and data validation to improve business logic in your apps.

Firebase Local Emulator Suite

The Firebase Local Emulator Suite is a set of tools that allow developers to build and test apps locally using
Firestore, Realtime Database, Cloud Storage, Authentication, Cloud Functions, and Firebase Hosting.

H

Hypertext Markup Language

HTML allows marking up (or describing) the structure of a human-readable web document or web user interface.
The XML-based version of HTML, which is called "XHTML5", provides a simpler and cleaner syntax compared
to traditional HTML.

Hypertext Transfer Protocol

HTTP is a stateless request/response protocol based on the Internet technologies TCP/IP and DNS, using human-
readable text messages for the communication between web clients and web servers. The main purpose of HTTP
has been to allow fetching web documents identified by URLs from a web browser, and invoking the operations
of a back-end web application program from an HTML form executed by a web browser. More recently, HTTP is
increasingly used for providing web APIs and web services.

I

IANA

IANA stands for Internet Assigned Numbers Authority, which is a subsidiary of ICANN responsible for names
and numbers used by Internet protocols.

ICANN

ICANN stands for Internet Corporation of Assigned Names and Numbers, which is an international nonprofit
organization that maintains the domain name system.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

104 de 108 23/5/22 18:48

IndexedDB

A JavaScript API for indexed data storage managed by browsers. Indexing allows high-performance searching.
Like many SQL DBMS, IndexedDB supports database transactions.

I18N

A set of best practices that help to adapt products to any target language and culture. It deals with multiple
character sets, units of measure, keyboard layouts, time and date formats, and text directions.

J

JSON

JSON stands for JavaScript Object Notation, which is a data-interchange format following the JavaScript syntax
for object literals. Many programming languages support JSON as a light-weight alternative to XML.

M

MathML

An open standard for representing mathematical expressions, either in data interchange or for rendering them
within webpages.

MIME

A MIME type (also called "media type" or "content type") is a keyword string sent along with a file for indicating
its content type. For example, a sound file might be labeled audio/ogg, or an image file image/png.

Model- View-Controller

MVC is a general architecture metaphor emphasizing the principle of separation of concerns, mainly between the
model and the view, and considering the model as the most fundamental part of an app. In MVC frameworks,
"M", "V" and "C" are defined in different ways. Often the term “model” refers to the app’s data sources, while the
“view” denotes the app’s code for the user interface, which is based on CSS-styled HTML forms and DOM
events, and the “controller” typically denotes the (glue) code that is in charge of mediating between the view and
the model.

N

Nested Object (maps)

In Firestore a Nested Object is called a map and host complex structure within a document.

O

Object Constraint Language

The OCL is a formal logic language for expressing integrity constraints, mainly in UML class models. It also
allows defining derivation expressions for defining derived properties, and defining preconditions and
postconditions for operations, in a class model.

Object-Oriented Programming

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

105 de 108 23/5/22 18:48

OOP is a programming paradigm based on the concepts of objects and classes instantiated by objects. Classes are
like blueprints for objects: they define their properties and the methods/functions that can be applied to them. A
higher-level characteristic of OOP is inheritance in class hierarchies: a subclass inherits the features (properties,
methods and constraints) of its superclass.

Web Ontology Language

OWL is formal logic language for knowledge representation on the Web. It allows defining vocabularies (mainly
classes with properties) and supports expressing many types of integrity constraints on them. OWL is the basis
for performing automated inferences, such as checking the consistency of an OWL vocabulary. Vocabularies, or
data models, defined in the form of UML class models can be converted to OWL vocabularies and then checked
for consistency.

P

Portable Network Graphics

PNG is an open (non-proprietary) graphics file format that supports lossless data compression.

Polyfill

A polyfill is a piece of JavaScript code for emulating a standard JavaScript method in a browser, which does not
support the method.

Q

QuerySnapshot

In Firestore QuerySnapshot contains none, one or multiple DocumentSnapshot objects that represente the results
of a query.

R

References

In Firestore a reference is an internal object that points to a location in a database, and can be used later to retrieve
or save data from or to Firestore. Creating a reference does not have any cost on the monthly billing.

Resource Description Framework

RDF is a W3C language for representing machine-readable propositional information on the Web.

S

Standard Generalized Markup Language

SGML is an ISO specification for defining markup languages. HTML4 has been defined with SGML. XML is a
simplified successor of SGML. HTML5 is no longer SGML-based and has its own parsing rules.

Scalable Vector Graphics

SVG is a 2D vector image format based on XML. SVG can be styled with CSS and made interactive using
JavaScript. HTML5 allows direct embedding of SVG content in an HTML document.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

106 de 108 23/5/22 18:48

Slot

A slot is a name-value pair. In an object of an object-oriented program (for instance, in a Java object), a slot
normally is a property-value pair. But in a JavaScript object, a slot may also consist of a method name and a
method body or it may be a key-value pair of a map.

Subcollection

In Firestore, a subcollection is a collection within a document, allowing the parent document to create nested and
hierarchical structure.

U

Unicode

A platform-independent character set that includes almost all characters from most of the world's script languages
including Hindi, Burmese and Gaelic. Each character is assigned a unique integer code in the range between 0
and 1,114,111. For example, the Greek letter π has the code 960. Unicode includes legacy character sets like
ASCII and ISO-8859-1 (Latin-1) as subsets.

XML is based on Unicode. Consequently, the Greek letter π (with code 960) can be inserted in an XML
document as π using the XML entity syntax. The default encoding of Unicode characters in an XML
document is UTF-8, which uses only a single byte for ASCII characters, but three bytes for less common
characters.

Uniform Resource Identifier

A URI is either a Uniform Resource Locator (URL) or a Uniform Resource Name (URN).

Uniform Resource Locator

A URL is a resource name that contains a web address for locating the resource on the Web.

Unified Modeling Language

The UML is an industry standard that defines a set of modeling languages for making various kinds of models
and diagrams in support of object-oriented problem analysis and software design. Its core languages are Class
Diagrams for information/data modeling, and Sequence Diagrams, Activity Diagrams and State Diagrams (or
State Charts) for process/behavior modeling.

Uniform Resource Name

A URN refers to a resource without specifying its location.

User Agent

A user agent is a front-end web client program such as a web browser.

W

WebM

WebM is an open (royalty-free) web video format supported by Google Chrome and Mozilla Firefox, but not by
Microsoft Internet Explorer and Apple Safari.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

107 de 108 23/5/22 18:48

Web Hypertext Application Technology Working Group

The WHATWG was established in 2004 by former employees of Apple, Mozilla, and Opera who have been
unhappy with the slow progress of web technology standardization due to W3C's choice to focus on the
standardization of XHTML2. Led by Ian Hickson, they developed HTML5 and related JavaScript APIs in
competition and collaboration with the W3C.

World Wide Web

The WWW (or, simply, "the Web") is a huge client-server network based on HTTP, HTML and XML, where web
browsers (and other 'user agents'), acting as HTTP clients, access web server programs, acting as HTTP servers.

World Wide Web Consortium

The W3C is an international organization in charge of developing and maintaining web standards.

X

XML HTTP Request

The XML HTTP Request (XHR) API allows a JavaScript program to exchange HTTP messages with back-end
programs. It can be used for retrieveing/submitting information from/to a back-end program without submitting
HTML forms. XHR-based approaches have been subsumed under the acronym "AJAX" in the past.

Resourses

!"Firebase API Reference.

!"Firebase Guides, step-by-step guides.

!"Cloud Firestore, documentation on this NoSQL cloud database for web development.

!"Node.js installation guide by Microsoft: Set up a NodeJS development environment under Windows.

!"Official Firebase Youtube Channel: Firebase, videos with tutorials and step-by-step guides.

!"Firebase Developers, an updated publication on Medium about Firebase, written for developers.

JS/Firebase Web App Tutorial Part 1: Building a Minimal App in Seven ... https://js-firebase-tutorials.netlify.app/minimal/index.html

108 de 108 23/5/22 18:48

https://firebase.google.com/docs/reference
https://firebase.google.com/docs/reference
https://firebase.google.com/docs/guides
https://firebase.google.com/docs/guides
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://docs.microsoft.com/de-de/windows/nodejs/setup-on-windows
https://docs.microsoft.com/de-de/windows/nodejs/setup-on-windows
https://www.youtube.com/user/Firebase
https://www.youtube.com/user/Firebase
https://medium.com/firebase-developers
https://medium.com/firebase-developers

